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Spin waves and magnetic exchange interactions
in insulating Rb, goFe, :5S€,
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The parent compounds of iron pnictide superconductors are bad metals with a collinear
antiferromagnetic structure and Néel temperatures below 220K. Although alkaline iron
selenide A Fe,.,,Se, (A=K, Rb, Cs) superconductors are isostructural with iron pnictides, in the
vicinity of the undoped limit they are insulators, forming a block antiferromagnetic order and
having Néel temperatures of roughly 500 K. Here we show that the spin waves of the insulating
antiferromagnet Rb,g4.Fe,sSe, can be accurately described by a local moment Heisenberg
Hamiltonian. A fitting analysis of the spin wave spectra reveals that the next-nearest neighbour
couplings in Rb,g.Fe; s5Se,, (Ba,Ca,Sr)Fe,As,, and Fe, s Te are of similar magnitude. Our results
suggest a common origin for the magnetism of all the Fe-based superconductors, despite having
different ground states and antiferromagnetic orderings.
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tides', calculations and experiments found that the electronic

band structures of these materials are composed of hole and
electron Fermi pockets near the I'(0,0) and M(1,0)/M(0,1) points,
respectively>. As a consequence, sign-reversed quasiparticle exci-
tations between the hole and electron pockets can induce s*-wave
superconductivity, giving rise to a neutron spin resonance at the in-
plane antiferromagnetic (AF) wave vector Q=(1,0) (Fig. 1)*”. These
results suggest that the s*-wave electron pairing mechanism is a
leading candidate for the microscopic origin of superconductivity
in all iron-based superconductors?.

The recent discovery of alkaline iron selenide AFe, ¢, Se, (A=K,
Rb, Cs) superconductors®'* has generated considerable new
excitement in the condensed matter physics community because
superconductivity in these materials may have a different origin
from the sign-reversed s-wave electron-pairing mechanism®-'°.
Although AFe, ¢, Se, are isostructural with the metallic AF iron
pnictides such as (Ba,Ca,Sr)Fe,As, (ref. 3), they are insulators near
x=0 (refs 10-12) and form a V5xV5 block AF structure with Fe
vacancy order (Fig. 1a) completely different from the iron pnic-
tides'” 22 If sign-reversed electron-hole pocket excitations between
I'(0,0) and M(1,0)/M(0,1) points are necessary for superconductiv-
ity, superconductivity in alkaline iron selenides should have a dif-
ferent microscopic origin because angle-resolved photoemission
experiment measurements on these materials reveal only electron
Fermi surfaces at M(1,0)/M(0,1) points and no hole Fermi pockets
at T'(0,0) point'*'°. On the other hand, if AF spin excitations are
responsible for superconductivity in Fe-based superconductors®,
one would expect that spin waves in the parent compounds of dif-
ferent classes of Fe-based superconductors have a similar energy
scale despite dramatically different transport and magnetic proper-
ties. Previous work on spin waves of (Ba,Ca,Sr)Fe,As, (refs 24-26)
and Fe, ,;Te (ref. 27) suggests that the overall magnetic spectra can
only be described by considering both the local and itinerant elec-
trons, and the next-nearest neighbour (NNN) exchange couplings
in these materials are similar. Because the insulating AFe, ¢, Se, has
completely different magnetic structure, Néel temperatures, and
static-ordered moments (Fig. 1) from those of (Ba,Ca,Sr)Fe,As,
and Fe, , Te (ref. 3), it is important to determine whether spin
waves in this material have an overall energy scale similar to other
iron-based materials.

Here we use inelastic neutron scattering to map out spin
waves in the AF-insulating Rb,4Fe, Se,. We find that although
Rb, ( Fe, ;;Se, has a Néel temperature (T=475K) much higher
than that of the iron pnictides (T, <220K)? spin waves for both
classes of materials have similar zone boundary energies* . How-
ever, although itinerant electrons must be considered to under-
stand spin wave properties in the AF iron pnictides**2, a local
moment Heisenberg Hamiltonian can effectively describe the
entire spin wave spectra of the AF Rb,Fe, ,Se,. A comparison
of the Heisenberg-Hamiltonian-fitted effective exchange couplings
in Rb, i Fe, ;Se,, (Ba,Ca,Sr)Fe,As, (refs 24-26), and iron chalcoge-
nide Fe, ,;Te (ref. 27) reveals that their NNN exchange couplings
are similar. Therefore, the NNN magnetic interactions in the AF
alkaline iron selenides, iron arsenides and iron tellurides, which
are robust against the change of electronic band structures, must
mainly stem from the superexchange interactions mediated by
As/Se(Te), and may have a key role in the magnetism of Fe-based
superconductors.

S oon after the discovery of superconductivity in iron pnic-

Results

The AF spin structure, reciprocal space, and spin waves. Before
carrying out inelastic neutron scattering studies of spin waves in
the insulating Rb, Fe, -Se,, we used polarized neutron-diffraction

a T b O=O=CO=C
P It'\'l' 1 ‘sl I I,' : \\I,“‘I
—— —— " —  — e It — - —}
Lo el — v Lol
I‘\ I"i;i‘?’_\\i e J2 ij_‘-i;i\ <
— =t W e J2 D \+'—‘+ (B
L kel — 53 D
SRR 5 s R
Y *
by D ) b o
o
>
—
Orthorhombic a, Orthorhombic
C d 3
(o T o T o -"IQ'T"IQ'T"IQ'-
e R
o\ /& o o\
A e e Ted
’3:\ 1:. 3 1 r [y " Y . oq-:
so_—@@@ S ol Ty
¥0—1|- x__l'_b/o.bo.bo-‘
i [ 28 se  sa |
z@@@ 2l % O
-3 L -3 L .IY.. " .bl‘. & .bl.. y
-3 2 -1 3 -3 2-1 0 1 2 3
Ho (r.I.u.) Ho (r.lu.)
9240- f40|-|-|'|'|'l
200 _ A
S S
2 160 2 ]
3 120 3 140.8
2 2
G g W o ) H
40 OH .+ .1 1,1 . doO
0O 1 2 3 4 5
L(rLu)

Figure 1| The antiferromagnetic spin structure and c-axis spin waves

of the insulating Rb, g.Fe, ;;Se,. Our neutron scattering experiments

were carried out on the ARCS chopper spectrometer at the Spallation
Neutron Source, Oak Ridge National Laboratory. We co-aligned 2.7 g of
single crystals grown by self-flux (with mosaic of ~6°). The incident beam
energies were £,=80,140,250,440 meV, and mostly with E; parallel to

the c-axis. Spin wave intensities were normalized to absolute units using

a vanadium standard (with 50% error). We define the wave vector Q at
(9,9,9,) as (H,;K;L,)=(q,a,/2mq,a,/2mq,c./2m) rl.u., where a,=5.65

and ¢, =14.46 A are the orthorhombic cell lattice parameters. The AF

spin structures are shown for (a) left and (b) right chirality. The V5xv5
superlattice structure is marked as grey with lattice parameter a,=8.933 A.
The orthorhombic lattice cell is shaded green. The effective nearest
neighbour, next nearest neighbour, next-next nearest neighbour exchange
couplings are marked as J,/J", J,/J%, and J,/J’, respectively. (c) The [H,, K]
reciprocal space with the expected AF Bragg peaks from the left chirality.
The green squares show nuclear Bragg peak positions. (d) Expected Bragg
peaks for both chiralities. (e) Spin waves projected onto the K -E plane
with H, integration from —2 to —1. The scattering were measured with
E;=440,250 meV for top and bottom panels, respectively. (f) c-axis spin
wave dispersion projected on the L-E plane with H, integration from 0.5 to
0.7 and K integration from O to 0.4. The solid line is the calculated c-axis
dispersion using effective exchange couplings discussed in the main text.

block in the V5x\'5 superlattice unit cell can have either left or right
chirality (Figs 1a,b), one expects to observe four AF Bragg peaks
stemming from each of the chiralities. Fig. 1c shows the expected
AF peaks from the left chirality in reciprocal space using the
orthorhombic unit cell similar to that of iron pnictides*-*, where

measurements to confirm the previously proposed Fe, block AF  theyoccurat(H,K,L,)=(0.2+m,0.6+n,L);(-0.2+m,—-0.6+mnL,);
checkerboard structure (Fig. 1a)'**2. As the ferromagnetic (FM) Fe, (0.6+m,-0.2+n,L,); (-0.6+m,0.2+n,L,); (mn==12,14,..., and
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L,=*1, £3,...). Considering both chiralities for the AF order, there
are eight Bragg peaks at wave vectors (H,K,L,)=(£0.2+m,+0.6+
nL,) and (H,K,L,)=(+0.6+m,£0.2+n,L)) from the block AF
checkerboard structure (Fig. 1d), where the odd values of L, indicate
AF coupling along the c-axis direction'”*2. Therefore, acoustic spin
waves in the AF-ordered phase of Rb,yFe, .Se, should stem from
these eight Bragg peaks.

Before mapping out the wave vector dependence of spin waves in
Rb, ., Fe, ;;Se,, we first determine their overall energy bandwidth and
the effective c-axis coupling. Figure le shows the background-sub-
tracted scattering projected in the wave vector (Q=[-1.5,K ]) and
energy plane. One can see three clear plumes of scattering arising
from the in-plane AF zone centres Q=(0,-2),(0,0), and (0,2) r.l.u.
With increasing energy, spin waves are gapped at energies between
75 and 95meV (the bottom panel of Fig. 1e) and between 150 and
170meV (the top panel of Fig. le). The zone boundary spin wave
energies are around 220 meV (the top panel of Fig. 1e). Therefore, in
spite of the large differences in Néel temperatures and AF structures
of Rb,,Fe, Se, (Ty=475K)!2, (Ba,Ca,Sr)Fe,As, (T, <220K)*%,
and Fe, ,.Te (Ty~70K)%, their zone boundary spin wave energies
are rather similar. To estimate the AF coupling strength along the
c-axis, we show in Figure 1f spin waves projected in the wave vector
Q=[0.6,0.2,L,] and energy space. One can see clear dispersive spin
waves stemming from AF positions L,=1,3,5 that reach the zone
boundary energy near 30 meV.

Evolution of spin waves. To see the evolution of spin waves with
increasing energy, we show in Figure 2 the two-dimensional
constant-energy (E) images of spin waves in the [H,K ] plane,
for various incident beam energies (E;). From their c-axis disper-
sion (Fig. 1f), we know that spin waves in Rb,Fe, .Se, are three-
dimensional, similar to those in (Ba,Ca,Sr)Fe,As, (refs 24-26), and
centre at AF wave vectors Q,.=(H,K,,L,)=(£0.2+m,+0.6+n,L)/
(£0.6+m,£0.2+n,L)withL,=£1,+3,... rLu. Foranenergy transfer
of E=10£2meV (above the anisotropy gap of E=8meV, Meth-
ods; Supplementary Fig. S1), spin waves are peaked at the expected
eight AF Bragg positions Q,; around Q=(0,0,%1) r.Lu. as shown
in Figure 2a. On increasing energies to E=26+2 (Fig. 2b) and
30+2meV (Fig. 2c), spin waves from the two chiralities centred
around the Q,; positions become apparent and increase in size with
increasing energy. The two spin wave rings from the left and right
AF chiralities (Figs la-d) meet near E=45+3meV (Fig. 2d). At
E=55+3meV, the overlapping spin waves from both AF chiralities
still form rings around the Q, ;. positions (Fig. 2e). The spin waves have
evolved into broad rings centred around (H,,K,,L,)=(£tm,tn,L)) at
E=701t3meV as shown in Figure 2f, just before disappearing into the
75<E<95meV spin gap (Fig. 1e). On re-emerging from the spin gap at
an energy transfer of 110+ 10 meV, the spin waves form transversely
elongated ellipses centred at the wave vectors Q=(%1,0)/(0,%1)
(Fig. 2g), identical to the AF ordering wave vector of (Ba,Ca,Sr)Fe,As,
(refs 24-26). Finally, at E=200+£20meV, an energy well above the
150<E<170meV spin gap, the spin waves move into wave vectors
Q=(%1,%1) (Fig. 2h), almost identical to the zone boundary spin
waves for BaFe,As, (ref. 24) and Fe, ;s Te (ref. 27).

Heisenberg Hamiltonian. We use a local moment Heisenberg
Hamiltonian with the effective nearest (NN or J,J*), next-near-
est (NNN or J,,J%), and next-next-nearest neighbour (NNNN or
J,,J’;) magnetic exchange couplings (Fig. 1a) to fit the observed spin
wave spectra®®~2 To account for the ~8 meV low-energy spin gap
(Methods), we add a spin anisotropy term J; to align spins along
the c-axis (Supplementary Eqs S1-S7). There are eight spins in
each magnetic unit cell (Fig. 1a,b); therefore, we should have four
doubly-degenerate spin wave bands in the Brillouin zone. From
Figures 1 and 2, we see that spin waves exist in three separate
energy ranges: the lowest branch starts from ~9meV to ~70 meV,
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Figure 2 | Wave vector dependence of spin wave excitations at
different energies for Rb, ;-Fe, ;:Se, at 10K. Spin wave excitations in

the [H,, K.] scattering plane at energies (@) E=1012; (b) E=26+2; (¢)
E=30+2;(d) E=45+3; (e) E=55+3; (f) E=70+3; (g) E=110+10; and
(h) E=200+£20meV. (a-c), (d-f),(g h) were obtained with £, =80, 140,
250, and 440 meV, respectively, along the c-axis. The vertical colour bars
indicate intensity scale in mbarns per sr per meV per f.u.

the second one from ~80meV to ~140meV, and the third branch
from ~180meV to ~230 meV. The high quality spin wave data allows
us to place quantitative constraints on effective exchange couplings
in the Heisenberg Hamiltonian (Supplementary Eqs. S15-S23).
While the low-energy spin waves between ~9meV and ~70meV
are acoustic modes arising mostly from AF interactions of the FM-
blocked spins, the two other branches of excitations are optical spin
waves associated with exchange interactions of iron spins within the
FM blocks*-*2. We have attempted, but failed, to fit the entire spin
wave spectra using only the effective NN and NNN exchange-cou-
pling Heisenberg Hamiltonian (Fig. 3; Supplementary Figs S1-S4).
For spin wave fits that include the NNNN exchange coupling J;, we
find that the low energy spin wave band (acoustic band) depends
mainly on J1,J;, J,, and J, (the effective c-axis exchange coupling), but
not J, and J,. The second band depends on the J, heavily and the top
band is mainly determined by J,.

For simplicity, we consider each FM block with four aligned
spins as a net spin S, They interact with each other antiferromag-
netically (via J,;) to form a cuprates like AF spin structure. There is
one spin wave band for this effective block-spin Heisenberg model,
which has an analytical form for spin wave dispersion (Supple-
mentary Eq. S15). By comparing the ], Heisenberg Hamiltonian
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Figure 3 | Spin wave dispersions of Rb, ¢;,Fe, ;;Se, and fits using the
Heisenberg Hamiltonian. Spin wave dispersions obtained by cutting along
high symmetry directions marked in the right panels for (a) highest energy
optical-energy band; (b) medium-energy optical energy band; and (¢)
acoustic spin wave mode. The blue solid lines show fits with J,>0, while
the pink solid lines are fits with J;=0. (d) The energy dependence of the
local susceptibility and our model calculation of the local susceptibility. The
vertical error bars indicate the statistical errors of one standard deviation.

with those of the J,-J"-],-]’,-];-J/; model, we find that spin waves in
the first band can be approximately described by the J; Heisenberg
Hamiltonian, where J,;S,q=(J", + 2/, +2],)S/4 is ~17 meV. This sug-
gests that the low energy band is mainly determined by J*,,J,,J;, and J..
Physically, the lowest energy band corresponds to the block spin
waves where the four spins fluctuate in phase and resemble a single
spin. Only at high energies, the relative motions within the blocks
can be excited, which correspond to the two high-energy optical
modes. Thus, the high-energy bands are basically determined by the
intra-block couplings J, and J,.

To quantitatively determine the spin wave dispersion, we deter-
mined the measured dispersion from a series of high-symmetry
scans through the (H,H,L) and (H,1/2H,-1/2,L) directions,
where L, was integrated to improve counting statistics. Fig. 3a-c
summarize the dispersion of spin waves along the marked direc-
tions on the right panels. For the low-energy acoustic mode, we find
a spin anisotropy gap below 8 meV and counter propagating spin
waves for energies above 30meV (Fig. 3c). The two high-energy
optical spin wave modes are essentially dispersionless. The blue
and pink solid lines show Heisenberg Hamiltonian fits to the dis-
persion curves with and without J,. The final fitted effective mag-
netic exchange couplings for spin wave dispersions are SJ,= —36+2,
SJ"=15+8, SJ,=12+2, §J',=16%5, §J,=9+5, J,=0, §J.=1.4+0.2,
and §J,=0.44%0.1meV (Supplementary Figs S1-S5 for fits with
other parameters). Figure 3d shows the energy dependence of the
observed local susceptibility® and our calculation using the fitted
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Figure 4 | Calculated energy dependence of the spin waves. The wave
vector dependence of the spin waves in the [H,, K] scattering in absolute
units for energies of (a) E=10£2; (b) E=26+2; (c) E=30%2; (d) E=45%3;
(e) E=55+3; (F) E=70+3; (g) E=110110; and (h) E=200+20meV. The
instrumental resolution is convoluted with the Heisenberg Hamiltonian.

parameters. We see that the calculated local susceptibility agrees
quite well with the data. To further compare the data in Figure 2
with calculated spin waves using fitted effective exchange couplings,
we show in Figure 4 the two-dimensional spin wave projections in
the [H,,K,] plane convoluted with instrumental resolution. The cal-
culated spin wave spectra capture all essential features in the data.

Discussion

For a Heisenberg model with spin S, the total moment sum
rule stipulates M, = (gl;)2S(S+1) (ref. 34). For irons in the 3d° elec-
tronic state, the maximum possible moment is g§=4 p,/Fe for g=2,
giving M, =24 uj/Fe. On the basis of absolute spin wave intensity
measurements in Figure 3d, the sum of the fluctuating moments
within the Brillouin zone (Supplementary Fig. S5) below ~250 meV
is (m?)~16+3 12/Fe. If we assume that the ordered moment is on the
order of ~3 uy/Fe (refs 19-21), we see that the total moment sum
rule is exhausted for magnetic scattering at energies below 250 meV.
Therefore, spin waves in insulating Rb, .Fe, .;Se, can be regarded as
a classic local moment system where a Heisenberg Hamiltonian is
an appropriate description of spin wave spectra. For comparison, we
note that the sum of the fluctuating local moments throughout the
Brillouin zone for AF metallic BaFe,As, (ref. 24) and superconduct-
ing BaFe, ,Ni,, As, (ref. 35) are (m?) =3.17£0.16 and 3.2£0.16 1} per
Fe(Ni), respectively (M.S. Liu et al., unpublished results). Because
(m?) for iron pnictides are much less than that of the insulating
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Figure 5 | Triple-axis spectrometer data and extra spin wave images near spin gaps on Rb, ;,Fe, ;;Se,. (a) Constant-Q scan at the AF wave vector
Q4r=(0.6,0.2,3) r.L.u. with background subtracted, and corrected for Bose population factor. There is a clear spin gap below E=8meV. The data were
collected on HB-1 triple-axis spectrometer. (b) Constant-energy scans across the AF wave vector at E=5meV and E=10meV. The data confirm the
presence of a spin gap at 5meV. The vertical error bars indicate the statistical errors of one standard deviation. Spin wave images in the (H,K,) plane for
energy transfers of (¢) E=74+4; (d) 82+4;(e) 90%4; (f) 140£10; (g) 155+15; (h) 195+15meV. There are clearly no spin wave excitations at E=82+4

and 155+15meV.

alkaline iron selenides, there must be significant hybridization of
Fe 3d with pnictide p orbitals and, among themselves, in iron pnic-
tides, which leads to a metallic state where the Hund’s coupling is
less important than in the atomic limit*. This is consistent with the
fact that a pure Heisenberg Hamiltonian cannot describe the entire
spin wave spectra in AF iron pnictides** and iron chalcogenide
Fe, ,sTe (ref. 27).

It is instructive to compare the effective magnetic exchange cou-
plings in different AF parent compounds of iron-based supercon-
ductors. First, comparing Rb,Fe, .Se, with Fe, . Te (ref. 27), we
note that, although their static AF orders have completely different
structures, these two iron chalcogenides are very similar in terms
of the values of their effective exchange couplings. Both of them
have, first, large FM J, (or J,,); second, large anisotropy between
the two NN couplings J,(J,,) and J{ (or J;); and, third, AF NNN
couplings and small anisotropy between two NNN couplings J, (or,
I,.) and J; (or J). Finally, there are significant AF-NNNN cou-
plings J;. Therefore, the presence of the iron vacancy ordering in
Rb, i Fe, ;,Se, reduces magnetic frustration and stabilizes the block
AF structure, but does not change the local magnetic exchange
coupling strengths as compared with Fe, . Te, even though the 5p

orbitals of Te should be larger than the 4p orbitals of Se. Second,
comparing Rb,,Fe, .,Se, to iron-pnictides, we find that there are
important differences as well as essential common features: the dif-
ferences include the large differences in the sum of the fluctuating
local moments {m?) and the NN exchange couplings. However, the
NNN exchange couplings are rather similar in spite of their insulat-
ing and metallic ground states.

To summarize, whereas the NN exchange couplings vary sig-
nificantly according to the spin configurations between the corre-
sponding two NN sites in the magnetically ordered states of alka-
line iron selenides, iron tellurides, and iron pnictides, the AF-NNN
exchange coupling remains almost uniform for these materials. This
is consistent with the idea that the NNN coupling J, is mainly deter-
mined by alocal superexchange mechanism mediated by As or Se/Te
(ref. 37). Therefore, regardless of their metallic or insulating ground
states, different AF structures and Néel temperatures, spin waves in
all parent compounds of Fe-based superconductors have a similar
energy scale with a common NNN magnetic coupling controlled by
the local superexchange interactions. As superconductivity in Fe-
based materials arises from electron or hole-doping of their AF par-
ent compounds, the similarities in the magnetic properties of parent
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compounds suggest that the microscopic origin of superconductiv-
ity for doped superconductors should be similar as well.

Methods

Single-crystal Rb, g,Fe, 55Se,. Our single crystals of Rb Fe, ¢, Se, were grown
using flux method. High-purity Fe, Se and Rb were mixed in appropriate stoichi-
ometry and placed inside an alumina crucible. The crucible was sealed in Ar-filled
silica ampoule. The mixture was heated to 950 °C for 5h followed by 5°C per hr
cooling down to 900°C, and then furnace cooling down to room temperature'’.
The actual crystal composition of Rb, ¢,Fe, -Se, was determined inductively
coupled plasma analysis.

Extra spin wave data. In addition to the time-of-flight measurements presented
in Figures 1-4, we have taken triple-axis spectrometer measurements on HB-1

at High Flux isotope reactor, Oak Ridge National Laboratory, to determine the
low-energy spin-anisotropy gap. Before showing the results, we note that, although
the scattering cross-section is related to the dynamic structure factor S(Q.E), it is
proportional to the imaginary part of the dynamic susceptibility y(Q ) if the
temperature is much lower than the lowest energy spin waves. Theoretically, one
has S(QE) =1/(1—exp(—E/(k;T)))x (QE). If k, T <E, as is the case of the experi-
ment, one has S(Q E)<y"(QE). Figure 5a shows y(QE) at Q,;=(0.6,0.2,3), which
clearly establishes the anisotropy spin gap of ~8 meV. Constant energy scans at
5meV and 10meV, shown in Figure 5b, confirm the presence of the spin gap below
8 meV. To further demonstrate the presence of spin gaps around 80 and 160 meV,
we show, in Figure 5c—e, constant energy cuts for energies of E=74+4meV,
82+4meV, and 90+4 meV, respectively. There are clearly no magnetic scattering
near E=82+4meV (Fig. 5d). Figure 5f~h show similar constant-energy images at
E=140+10, 155+15, and 195+ 15meV. The scattering near E=155*15meV are
featureless, confirming the presence of a spin gap at this energy.
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Supplementary Fig. S1: Calculated local susceptibility and dispersion curves for three different exchange
parameters. (a) Energy dependence of the imaginary part of local susceptibility for the three different exchange
parameter sets. (b,c) Dispersion curves for the three different exchange parameter sets as discussed in the text.
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Supplementary Fig. S2: Calculated dynamic structure factor and their comparison with Heisenberg Hamiltonian
with different exchange parameters. (a) Constant energy cut of data at E = 102.5 + 7.5 meV projected onto the
(H,, K,) plane. (b,c,d) Calculated dynamic structure factor S(g,w = 102.5 £ 7.5) projected onto the (H,, K,) plane
for three different exchange coupling parameters. (e-m) Cuts along different directions and their comparison with
spin wave calculations in three different exchange coupling parameters.
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Supplementary Fig. S3: Spin-wave dispersions of Rbg ggFej 585e2 and fits using the Heisenberg Hamiltonian with
three different exchange coupling parameters as discussed in the text. Spin-wave dispersions in the acoustic branch
obtained by cutting along high-symmetry directions and model fits using three different sets of exchange coupling
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[H,,0.2] direction by integrating K, from 0.15 to 0.25.
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Supplementary Fig. S4: Spin-wave cuts of Rbg ggFe; 585e2 and fits using the Heisenberg Hamiltonian with three sets
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Supplementary Fig. S5: Red squares show wave vector integration area used for determining the local dynamic
susceptibility x”(w) at different energies. For E; = 80 meV, we use (a) for E = 10-20 meV; (b) 30-50 meV; E; = 140
meV, E = 30-90 meV; E; = 250 meV, E = 40-90 meV; (c) E; = 250 meV, E = 90-150 meV; E; = 440 meV,

E = 100-250 meV. We chose area (b) for E = 30-90 meV becuase spin wave intensity at this energy region is mainly
distributed near @ = (0,0), which is partially blocked by the main beam. For E = 90-150 meV, we chose area (c)
because at these energies, some of the detectors in area (a) do not give correct intensity, and comparing with area
(b), data in area (c¢) have better statisitcs and lower background.



Supplementary Notes:
Supplementary Note 1. Model Heisenberg Hamiltonian
The model we use to understand the magnetic excitation is a quantum spin model with up to third nearest neighbor

(NNNN) exchange in the ab-plane, nearest neighbor (NN) exchange along the c-axis and a single ion anisotropy term,
ie.,

H = H,, + H. + H, (S1)
where

H, = JCZST-ST+Z, (S2)

H, = Z (S2,+52,)

and H,y, is given in Ref. [30]. To solve the Hamiltonian, one can use the standard linear spin wave approach. A
generic position of the spin is given by

r =ml; + nls +dj, (S3)
where m,n are integers and
1, = (2x —y)/V/5, (S4)

12:(X+2y)/\/5,
di=0,d2=x,dg=x+y,dg=y

The Holstein-Primakoff transform (truncated) of the spin operators is given by
For m + n =even:

S, (r) = v2Sa;(R), (S5)
S_(r) = V2Sal(R),

For m + n =odd:
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Define ot (k) = (al(k), ab(k), ak(k), al(k), a1(=k), az(—k), as(—k), as(—k)), and we have
1 A(k) B(k
=32 (50 48 ) v, (57)

A(k) and B(k) are four-by-four matrices, defined by:

EO Jle”% JQQikm‘Hky + Jée—z?lcQC Jleiky
. E J eiky J—ikw‘i‘iky + Jle—2iky
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Ey
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B(k) = S . 2J. cos(ky) Jse + Jse Jie (S9)

2J. cos(k) Jhetha—iky L Joe2iky )
. 2J. cos(k)



where By = —(2J1 + Jo — J] —2J5 — 2J3 + J, — 2J. — J,)S. The lower triangle elements are suppressed because both
matrices are hermitian.
We use equations of motion to solve this Hamiltonian.

(k) ot = —i ( B A ) b(k). (S10)

Solving this eigenvalue problem for each k, we have
H= 3 (k) +1/2)wi(k), (811)
i=1,2,3,4;k

and

Z Uy (k ) + Vi (k)yE (—F). (S12)

The differential cross section of inelastic neutron scattering can be expressed in terms of the spin wave dispersion and
wave functions:

o(w,q) = Ip(w, q)(1 + np(w,T)) Z|ZUW )+ Vi (—q) 2 D(w, wa). (S13)

In the above expression, Ip(w,q) includes all factors of experimental resolution extracted from information of each
detector, ng(w,T) is the Bose factor and D(w,wy) is the harmonic oscillator damping given by

4 wwol'(w)

D =— .
(w,wo) T (w? — w})? + 47 (w)?w?

(S14)

The damping strength I'(w) is approximated by a linear function of energy whose explicit form is to be fitted. Our
fitting is based on so far the most general spin model with all symmetry allowed exchanges up to NNNN. A failure
of this model in understanding the data would mean that the observed excitations cannot be explained by a local
moment picture and the effect of itinerant electrons must be seriously considered.

Supplementary Note 2. Fitting constraints

The high quality of the data allows one to place quantitative constraints on parameters in the model. The data
shows that the excitations exist in three separate energy ranges. The lowest branch starts from ~ 9 meV to ~ 70
meV, second from ~ 100 meV to ~ 140 meV and the third branch from ~180 meV to ~230 meV. The low energy
part of the first branch can be fitted very well by the form

e(k) =\ ALP? 4 p2P2 g2, (S15)

with v¢%? = 300 meV - A and AP = 9 meV. At the propagation vector of the ground state @ = (0.6,0.2,1) rlu (in
the orthorhombic basis), energy has k. dispersion, and the band top is about E¢*P ~30 meV. All these values have
analytical expressions in the spin wave model. The anisotropy gap (bottom of the first branch) is

Ay = S\ T} + ATy + 4T3+ 4Tc + ). (S16)
The top of the first band is reached at Q, = (0.2,0.4,0) rlu with

By = 2S[2J2 + J\(Jo+ Js — Jh+ J) + (Jo+ Js — T (Jy + Js — Ty + 2J0) — Ju(J} + 2(J4 + Js — J§ + J){S17)

—\/4.]{l + JPPT2 AT T+ Tz — T4 J)T, + Ty + Tz — T+ Jo) — 4T3 (T + 2(Jy + Js — J + J))]z.
Without single ion anisotropy, i.e., Js = 0, the spin wave velocity is given by

5
Vg = \/QS{[Jl(J{ +2(J5 + J3 — J3)) + Ji(Jo — oy — Js + J5) + 2(Jo(Jy + T3 — J5) + 2J5(J5 — J5))] (S18)

(T 4 2(J3 + T3+ Jo)) /(s = J5 4 Jo — Jy — T3 + J5) }/2



The expression with Jg # 0 is also available but too lengthy to be placed here, and interested readers can request it from
the authors. The second branch actually contains two close spin wave bands. The branch starts at @ = (0.3,0.1,1)
rlu with energy Esp,, whose expression is again too lengthy to be published. The second branch ends at I' = (0,0, 0)
point with

Eoy = s\/(y1 QT 4 2Ty — 204 — 25 + 204 — J)(2J1 + 205 — 2T — 25 + 274 — 4T, — J,). (S19)

The highest branch starts at I' point with

Egp = S\/ (4Jy — 4T}, — 4Js — Jo)(4Jy — 20 — 4J. — J), (S20)
and ends at (0.2,0.4,0) with
By = 2S[2J2 + J{(Jy + J3 — J 4 Jo) + (Jy + Js — J5) (Jo + T3 — Ty 4+ 2J.) — Ji(J; + 2(J5 + J3 — J4 + J.)(S21)
+\/4J{l F T2 A AT (TS 4 Js — T4+ J) T+ Th+ Tz — T4+ Jo) — 4T3 (J] + 2(J5 + Js — J4 + Jo))]2.

The band top along the c-axis is reached at (0.6,0.2,0) with

B, = §\J[200f +2J5 + 2J3) — J.)(4J. + ). (522)

Based on the data and considering the effect of large damping at high energies, we have for the above quantities the
following constraints:

Ay = APP =8~ 12 meV, (S23)
vy = V¥ =250 ~ 300 meV - A,

FEyp = 60~ 75 meV,

FEo = 90 ~ 110 meV,

FEy = 110 ~ 130 meV,

E3, = 180 ~ 200 meV,

Es = 200 ~ 220 meV,

E. = 25~ 30 meV.

Supplementary Note 3. Fitting parameters

The above constraints give a very narrow range of parameters, we can further constraint possible exchange constants
so that a quantitative fit to the data shown in the paper can be found. In this section we discuss what elements are
indispensable to our fittings.

We first emphasize that a proper fitting should have J3 > 0 and J{ > 0 (antiferromagnetic). To see this, we compare
the following possible parameters since they can all approximately describe the data:

(1) SJ, = =36, SJ; =15, ST, =12, SJ;, =16, SJ3 = 9.5, ST, =0, SJ. = 1.4, SJ; = 0.44 meV. (2) SJ; = —36,
SJ{ = =57, 8J, =134, SJ, =224, SJ3; =14.2, SJ, =0, SJ. = 1.4, SJ; = 0.44 meV. (3) SJ; = =36, SJ; = 10,
SJy =11, 8J) = 287, SJ3 =0, SJ; =0, SJ. = 1.4, SJ, = 0.44 meV. Suplementary Figure S1 summarizes the
calculated x”(w) and spin wave dispersions for all three sets of parameters. From the calculation, we see that all three
parameter sets give similar local susceptibilities, and therefore cannot be distinguished based on x”(w) alone.

By comparing the calculated spin wave dispersion curves with data, we were able to separate which model is
correct. Supplementary Figure S1b and Slc shows the outcome for the three sets of exchange couplings for the
acoustic and optical modes, respectively. We see that parameters of (1) and (2) fit the acoustic and optical data
slightly better. Although the imaginary part of local susceptibility and dispersion curves for different exchange
parameter sets are similar, their constant energy patterns at ~110 meV are very different, which provides key clues
to the choice among different exchange coupling parameters. In the energy range around 110 meV, several optical
branches are mixed together. The combined spin wave intensity patterns depend sensitively on the exchange coupling
parameters. Supplementary Figure S2 compares directly the calculated patterns with the observation for the three
set of exchange parameters. Supplementary Figure S2a shows the raw data, while Supplementary Figs. S2b-d plot
expected scattering profiles for the three sets of parameters, respectively. Clearly, the first set of parameters describes
the data much better. The second set of parameters gives scattering profiles with horizontally enhanced intensity;
while the third set with SJ3 = 0 overestimates the scattering intensity and gives circular shaped scattering profile.



Both models predict magnetic scattering profiles near 100 meV different from the data in Supplementary Fig. S2a.
Based on these considerations, we find that the effective magnetic exchange coupling constants in the first set can
best describe the data. This conclusion is further confirmed by comparing the calculated dispersion with the observed
dispersion using the three sets of parameters as shown in Supplementary Figs. S2, S3 and S4.

As a remark, we note the important fact that the in-block NNN exchange Jo must be positive (antiferromagnetic)
for all candidate sets of parameters. Jo has little effect on the first and the third branches of dispersion, but is strongly
coupled to the middle branch. A ferromagnetic Jy can push up the second branch for about 30%. This means the
gap between first and second branches would be more than 40 meV, while in experiment it is clearly less than 30 meV.

Supplementary Note 4. Sum rule

Here we discuss the total moment sum rule. For a Heisenberg model with spin .S, the sum rule is formulated as
[34]:

1 oo
M, =~ Z/dk/ dwS**(k,w) = M, + M, + M, = ¢*>u%S(S + 1), (S24)

where ¢ is the Lande factor. For free electrons g = 2. In Rbg.ggFe; 585e2, the maximum possible spin S = 2 is
expected, which gives M, = 24 1% /Fe.

The longitudinal part M, comes from the static moment (elastic) and the inelastic contribution. For our system,
the static moment is about 3 pp/ Fe [19], which contributes 9 p%/Fe. The inelastic part mainly comes from the
two-magnon scattering process. The magnetization reduction can be evaluated as AS = 0.5 from the static moment
for S = 2. From Ref. [34], we can estimate the two-magnon spectral weight as AS(1 + AS)g?u% ~ 3u%/Fe, where
the normalization factor has been chosen as 1. The spectral weight from the two-magnon process is only 1/3 of the
elastic part, which is much weaker than the cuprates which has S = 1/2. In unpolarized neutron experiments, the
two-magnon spectral weight is generally very hard to detect. We will ignore it in the following treatment.

The transverse part M, + M, mainly comes from the one-magnon spin wave spectrum. According to Eq. (1) in
Ref. [33], we can get the dynamic structure factor S(F) by removing the magnetic form factor. Then using Eq.
(5) in Ref. [33], we can get the transverse part by integrating S(E) over the whole energy range. To calculate the
local dynamic susceptibility x”(w) within the (H,, K,) scattering plane, we integrate and average the intensity in the
entire Brillouin zone as marked in the red boxes of Supplementary Fig. S5. Due to the crystal symmetry, averaging
the intensity in the red rectangular area will be equal to averaging the intensity all over the reciprocal space (after
correcting the magnetic form factor). Different regions are chosen (1) to avoid detector gap & main beam stop where
there are no signal; and (2) to reduce the influence of large-@Q background which may cause an over-estimation for
the magnetic intensity.

Experimentally we do not observe the neutron scattering signal above 250 meV, so we can choose the integration
range from 8 to 250 for the inelastic magnetic scattering. We assume that all scattering inside the integration red
box is magnetic in origin. Since single phonon cut-off is about 40 meV, we are confident that scattering we observe
above 40 meV are spin waves. We get the transverse part ~ 26 + 5 p%(f.u.)~!, where f.u. means formula unit.
Considering the formula of Rbg ggFe; 585e2, we divide it by a factor of 1.6. The transverse part M, 4 M, is evaluated
as 16 & 3u% /Fe.

The total moment from our evaluation is 25 +5 u% /Fe, which is very close to the expected total moment from the
sum rule. Thus the Heisenberg model with S = 2 is an appropriate description for the insulating Rbg ggFe; 585e2 and
the local moment spin waves describe the spin dynamics very well. We note that the errors in the local moments
estimation only include statistical errors, and do not include the possible systematic errors of vanadium normalization,
which can be up to 50%.





