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Non-Fermi liquid behaviour in a correlated 
flat-band pyrochlore lattice
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Electronic correlation effects are manifested in quantum materials when 
either the on-site Coulomb repulsion is large or the electron kinetic energy 
is small. The former is the dominant effect in cuprate superconductors 
and heavy-fermion systems whereas it is the latter in twisted bilayer 
graphene and geometrically frustrated metals. However, the simultaneous 
cooperation of both effects in the same quantum material remains rare. 
The design aim is to produce correlated topological flat bands pinned at the 
Fermi level. Here, we observe a flat band at the Fermi level in a 3d pyrochlore 
metal CuV2S4. Our angle-resolved photoemission spectroscopy data reveal 
that destructive quantum interference associated with the V pyrochlore 
sublattice and further renormalization to the Fermi level by electron 
interactions induce this flat band. Consequently, we discover transport 
signatures that evidence a deviation from Fermi liquid behaviour as well as 
an enhanced Sommerfeld coefficient. Our work illustrates the combined 
cooperation of local Coulomb interactions and geometric frustration in a 
pyrochlore lattice system to induce correlated topology by constructing 
and pinning correlated flat bands near the Fermi level.

Quantum many-body effects are manifested in materials in which the 
electron kinetic energy (t) is small or comparable to the on-site Coulomb 
interactions (U)1, U/t ≥ 1, leading to spontaneous symmetry-breaking 
orders such as magnetism, nematicity, unconventional superconduc-
tivity and charge density waves (CDWs)2–5. Such a regime can be reached 
either in materials with strong Coulomb interactions (large U), such as 
cuprates, iron-based superconductors and heavy-fermion systems, 
or in materials with quenched kinetic energies (small t) through the 
construction of flat bands in a moiré superlattice or through destruc-
tive quantum interference6–11. In the former case, the electrons feel 
the strong repulsion from the nearby electrons and cannot be treated 
simply as single particles. As a result, the electron mass is strongly 
enhanced and the band velocity strongly renormalized, which often 

lead to non-Fermi liquid transport and quantum criticality and can 
sometimes reach the limit of Mott insulating phases2,4,12–16. In the latter 
case, a quasi-flat band with small bandwidth can be achieved, for exam-
ple, in twisted bilayer graphene by folding of the large moiré superlat-
tice6. Similar strong correlation phenomena, including unconventional 
superconductivity, ferromagnetism and linear resistivity7,17,18, have 
also been found. Alternatively, another way to realize topological flat 
bands is with quantum interference of the electronic wavefunction in 
geometrically frustrated lattices8,19–22. In both twisted bilayer graphene 
and geometrically frustrated lattices, the non-local construction of 
the flat bands also deem these systems to be topological. In contrast 
to twisted bilayer graphene, for which devices are limited to certain 
experimental probes, geometrically frustrated lattices are found in 
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By using a combination of angle-resolved photoemission spectroscopy 
(ARPES), first-principles calculations, auxiliary-spin calculations, and 
transport and thermodynamic measurements, we identify a topologi-
cal flat band near the Fermi level that is induced by the combined effect 
of the pyrochlore lattice geometry and on-site Coulomb interactions 
(Fig. 1a). This is consistent with our observation of non-Fermi liquid 
transport and a large Sommerfeld coefficient in CuV2S4. Our study 
reveals a cooperative mechanism between the quantum-interference 
topological flat band and local Coulomb interactions, and it lays the 
foundation for identifying model bulk systems for emergent phases 
in strongly correlated topological systems.

CuV2S4 is a face-centred cubic material that forms in the space group 
of Fd ̄3m (Fig. 1b)32,33. The Cu atoms form a diamond sublattice and the V 
atoms form a pyrochlore sublattice (Fig. 1c). Importantly, the pyrochlore 
lattice is a geometrically frustrated lattice in which destructive 3D quan-
tum interference confines the electron wavefunction to the centre of the 
3D block surrounded by the tetrahedra (Fig. 1a), leading to 3D flat bands 
in momentum space27–29. This mechanism can be understood more 

a wide range of materials for which large high-quality single crystals 
are available23–25.

An optimal way to enhance U/t is, therefore, to have both large U 
and small t by combining the two methods such that electron–electron 
interactions are strong in a system that exhibits natural flat bands 
due to destructive quantum interference. Although flat bands have 
been theoretically predicted and experimentally identified in kagome 
materials, when realized in bulk, the finite interlayer coupling disrupts 
the in-plane quantum interference, often leading to a relatively large 
bandwidth23–26. To find an optimal geometrically frustrated lattice, we 
seek materials that belong to the three-dimensional (3D) analogue, the 
pyrochlore lattice27–29. Although numerous crystal structural families 
feature a pyrochlore sublattice, including traditional pyrochlores, 
Laves phases and spinels, a metallic compound characterized by mini-
mal hybridization between the electronic states arising from the con-
stituents of the pyrochlore sublattice and those of the other atomic 
sites is particularly conducive to the formation of a flat band30. In this 
context, the spinel CuV2S4 emerges as a highly promising candidate31. 
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Fig. 1 | Crystal structure and DFT calculations of CuV2S4. a, Correlation and 
3D flat band in a pyrochlore lattice. The electrons are confined to the shaded 
region of the centre of the pyrochlore lattice, with quenched effective hopping 
outside the region, leading to the 3D topological flat band. Moderate correlations 
of 3d orbitals renormalize the topological flat band induced by 3D quantum 
interference so that it is close to EF, which in turn amplifies the effects of the 
correlation. b, Crystal structure of CuV2S4. The V atoms are surrounded by the 
S tetrahedron, and the Cu atoms are surrounded by the S octahedron. c, The V 

atoms form a pyrochlore sublattice, which consists of corner-sharing tetrahedra. 
d, The 3D Brillouin zone, with the corresponding high-symmetry points labelled. 
The blue arrows mark the primitive unit cell basis vectors. The yellow arrows 
mark the ARPES measurement coordinates. e, DOS and projected DOS from DFT 
calculations. The sharp peak at 0.5 eV indicates the 3D flat band (FB). f, Band 
dispersion of CuV2S4 projected onto the V t2g and eg orbitals and Cu and S atoms 
from DFT calculations. disp., dispersive; LHB, lower Hubbard band; UHB, upper 
Hubbard band.
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intuitively by considering the pyrochlore lattice as alternately stacked 
kagome lattices and triangular lattices along the (111) direction with the 
interlayer coupling being completely quenched29,30. From our 
density-functional theory (DFT) calculations of CuV2S4 (Fig. 1e,f), the 
electronic states near the Fermi level are dominated by the V 3d orbitals 
whereas the contributions from Cu and S atoms are mainly 1 eV below EF. 
Notably, there is a sharp peak in the density of states (DOS) 0.5 eV above 
EF (Fig. 1e). This sharp peak indicates the 3D quantum-interference-induced 
flat bands, as further revealed by the calculated band dispersions  
(Fig. 1f)27–29. This calculation is consistent with the independent calcula-
tion in the materials database20. We demonstrate that the flat band’s origin 
is the destructive quantum interference, as evidenced by the absence of 
the flat band in an artificially distorted lattice of CuV2S4 after purposely 
disrupting the pyrochlore lattice (Supplementary Fig. 10). As the 
low-energy electronic states are dominated by the V atoms with negligible 
hybridization to the Cu and S states, the pyrochlore physics is expected 
to be manifested in this compound, leading to flat bands that are topologi-
cally nontrivial28,29. Note that previous studies have revealed two CDW 
transitions in CuV2S4 at around 50 and 90 K with an accompanied struc-
tural transition from cubic to orthorhombic34–36, which are also consist-
ently reproduced by our transport studies (Supplementary Fig. 1). 
However, the lattice distortion is very small (less than 0.05% for a and b 

and less than 0.2% for c; ref. 36), and we did not find any dramatic modi-
fication of the electronic structure, either in the ARPES measurements 
or the DFT calculations (Supplementary Figs. 2, 3 and 4). Therefore, for 
simplicity, we focus our discussions on the cubic structure for the rest of 
the paper, which will not affect our conclusions.

Having revealed theoretically the existence of 3D flat bands due 
to geometric frustration, we next present the ARPES results. Figure 2a 
shows the out-of-plane constant-energy contour mapping of CuV2S4 at 
−0.6 eV with respect to the (001) surface. The corresponding in-plane 
mapping at −0.6 eV is shown in Fig. 2b using 146 eV photons. Both map-
pings exhibit a spectral intensity that matches well with the Brillouin 
zone periodicity. From these, we are able to obtain precise cuts along 
the high-symmetry momentum directions (Fig. 2c,d). Overall, the 
measured spectral images match well with the calculated band disper-
sions below −0.5 eV, where the DOS is largely dominated by the Cu and 
S orbitals, which is consistent with a previous photoemission study37. 
Near EF, however, the measured electronic structure exhibits moderate 
deviations from DFT calculations. Surprisingly, we observe a flat band 
near the Fermi level. Its intensity is more strongly manifested when 
measured at smaller photon energies. An example of this is shown along 
the momentum cut indicated in Fig. 2a as measured by 58 eV photons 
(Fig. 2e). To examine the flat band around EF more closely, we plot the 
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Fig. 2 | Electronic structure and 3D flat band of CuV2S4 by ARPES. a, Out-
of-plane constant-energy contour mapping at −0.6 eV measured for different 
photon energies with respect to the (001) surface. The red solid lines mark 
the corresponding Brillouin zone. The cyan and white solid lines mark the cut 
positions. b, In-plane constant-energy contour mapping at −0.6 eV of the (001) 
surface. c,d, Spectral images of cut 1 (c) and cut 2 (d), as indicated in a with the 
corresponding band dispersion from the DFT calculations (black dashed lines) 
overlaid on top. e, Spectral image and corresponding EDC stacks showing the flat 
band around EF measured by 58 eV photons with the corresponding momentum 

position indicated in a. f, Spectral image and corresponding EDC stacks showing 
the flat band around EF along the out-of-plane direction as indicated in a. g, 
Spectral images measured with different photon energies showing the 3D flat 
band. The corresponding cut positions are indicated in a. h, Photoionization 
cross-section ratios of V 3d over Cu 3d and S 3p orbitals (https://vuo.elettra.eu/
services/elements/WebElements.html) and integrated spectral weight of the 
EDCs in f over the energy range of −0.5–0 eV as a function of the incident photon 
energy. a.u., arbitrary units; Int., integrated.
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stack of energy distribution curves (EDCs) for the corresponding 
spectral image. The sharp peaks in the EDCs marked by the red arrow 
confirm the flat band around EF. Next, we examine this flat feature along 
the out-of-plane direction (Fig. 2f). Sharp peaks are also observed at EF 
in the corresponding EDC stack. This is further illustrated by the series 
of spectral images measured with different photon energies (Fig. 2g). 
The flat band spans almost the entire Brillouin zone, thus revealing its 
3D nature. Moreover, the stronger flat-band intensity with relatively 
lower photon energies is consistent with it having a dominantly V 
3d orbital character, as the expected photoionization cross-section 
ratios of the V 3d over Cu 3d and S 3p orbitals (https://vuo.elettra.eu/
services/elements/WebElements.html) increases as the photon energy 
decreases in the range of photon energies that we experimentally 
probed (Fig. 2h and Supplementary Fig. 6).

Although both our DFT calculations and ARPES measurements 
revealed the existence of a 3D flat band in CuV2S4, these two flat bands 
are in different energy positions. The flat band predicted by the DFT 
calculations is 0.5 eV above the Fermi level whereas it is observed to be 
located at EF experimentally (Fig. 3a). This disagreement is not only lim-
ited to the flat band but also other bands in the near-EF region, suggest-
ing that the V 3d-dominated bands may exhibit non-negligible electron 
correlation effects. Note that for CuV2S4, each Cu atom is surrounded 
by S atoms forming a tetrahedron whereas each V atom is surrounded 
by S atoms forming an octahedron (Fig. 3c). As a result, the 3d orbitals 
of Cu are split into t2g and eg orbitals by the crystal field with the t2g orbit-
als at a higher energy. The situation is reversed for the V 3d orbitals in 
the octahedral environment, as the eg orbitals have a higher energy. It 
has been reported that the Cu 3d orbitals are fully occupied with ten 
electrons, which is consistent with the negligible Cu 3d states near EF 
from DFT calculations (Fig. 1e,f)38. For the V 3d orbitals, an average of 
1.5 electrons fill the three degenerate t2g orbitals, so that electron cor-
relation effects are expected39. This distinction between the V and Cu 
atomic environments is consistent with the observation that the fully 

occupied Cu d bands away from EF agree well with the DFT calculations 
whereas those for the near-EF V d orbitals show a mismatch between 
DFT and measured dispersions (Figs. 2c,d and 3a and Supplementary 
Fig. 5). This strong orbital-dependent renormalization for CuV2S4 is 
reminiscent of the orbital selectivity of iron-based superconductors, 
for which electron correlation effects are strongly enhanced for the Fe 
dxy orbital compared to other 3d orbitals39–45.

To incorporate the effects of the electron correlation to the 
near-EF states in the calculated electronic structure, we performed an 
auxiliary-spin calculation of a 12-band model comprising the V t2g orbit-
als on the pyrochlore sublattice obtained by fitting the DFT results of 
CuV2S4 in the near-EF region (Methods and Supplementary Figs. 7–9). 
The bands calculated without incorporating the Coulomb interac-
tions clearly reproduce the DFT calculations of the V 3d bands near EF  
(Fig. 3e). We consider the effect of electron correlations by including 
both Coulomb interactions (U) and Hund’s coupling (JH). At a combi-
nation of U = 5 eV and JH/U = 0.2, the overall band structure exhibits a 
moderate band renormalization (Fig. 3f). More interestingly, the 3D 
flat band is shifted close to the Fermi level (Fig. 3f,g). Indeed, a com-
parison of the two calculations with the corresponding ARPES spectral 
image shows a much improved agreement for the one incorporating 
correlation effects (Fig. 3h,i). This improvement is not limited to the 
flat band around EF but occurs also for the dispersive low-energy elec-
tronic states around Γ and X. To further compare the calculations and 
the dispersive bands, we obtain the band dispersions of a hole-like α 
band and an electron-like β band from EDC fitting (Fig. 3h–i). Their 
band velocities match much better with the calculations at U = 5 eV and 
JH/U = 0.2. Moreover, the band top of the α band touches the flat band, 
forming a quadratic band touching at Γ (ref. 46). Taking advantage of 
this, we estimate the energy position of the flat band by fitting the α 
band dispersion from experiments. The fitted band top is at −7 meV  
(Fig. 3h–i). Considering a tiny gap (7 meV from DFT) opening at the 
point Γ in the orthorhombic phase (Supplementary Fig. 2), the flat 
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band should be in the proximity of EF. As the energy of the flat band at 
Γ is also near its band bottom (Fig. 3a), we conclude that the flat-band 
spectral peaks we observe around EF are likely the tail of its spectral 
intensity cut off by the Fermi–Dirac function, with the true energy 
position slightly above EF. This is consistent with a cut measured at high 
temperature divided by the Fermi–Dirac function (Supplementary  
Figs. 13 and 14). Hence, the consistently observed renormalization 
of these dispersive bands as well as the presence of the flat band at 
EF further demonstrates that the origin of this renormalization is the 
electron correlation associated with the partially filled pyrochlore 
V t2g orbitals. We emphasize that the existence of the flat band at EF 
must be the combined effect of electron correlations and destructive 
interference. The auxiliary-spin calculations from the starting point 
of the distorted CuV2S4 crystal structure with a destroyed pyrochlore 
sublattice do not produce a similar flat band at EF, hence confirming 
that electron correlations alone are not sufficient to give rise to the flat 
band in CuV2S4 (Supplementary Note 6).

Combining the ARPES results and the auxiliary-spin calculations 
suggests that CuV2S4 is in a regime with large U/t, a result of both large 
U from the on-site Coulomb interaction and small t from quantum 
interference associated with the pyrochlore lattice. For materials in 
the large U/t regime, such as unconventional superconductors and 
heavy-fermion compounds, the transport behaviour often deviates 
from a Fermi liquid13,47. We, therefore, examined the transport 

properties of CuV2S4. Interestingly, the temperature-dependent resis-
tivity shows a power law behaviour, ρ(T) ∝ Tα. To determine the expo-
nent α, we plot α = ∂ ln(ρ(T ) − ρ0)/∂ ln(T ) as a function of temperature 
(inset of Fig. 4a), which shows that α = 1.6 extending from the lowest 
temperature of 2 K up to 20 K (see also Supplementary Fig. 11). This is 
further evident in the much more linear behaviour of the resistivity 
plotted as a function of T1.6 compared to the plot as a function of T2  
(Fig. 4b). This T1.6 power law behaviour suggests non-Fermi liquid 
behaviour in CuV2S4, which is further indicated by the non-saturating 
magnetic susceptibility that follows the logarithmic temperature 
dependence at low temperatures (Supplementary Fig. 12). Moreover, 
we also measured the specific heat, from which we determined the 
Sommerfeld coefficient, γ = 60 mJ K−2 mol−1 (Fig. 4d). Notably, this γ is 
6 times larger than that predicted by the DFT calculations (γDFT =  
10 mJ K−2 mol−1), consistent with previous reports48,49. Given that this 
value was experimentally determined for the CDW ordered state where 
the DOS develops a CDW gap (Fig. 4c), this enhancement factor is likely 
a lower bound of the true factor and indicates the contribution from 
electron–electron correlations and the renormalized flat band near EF. 
With that said, also note that the specific heat may not be as good a 
measure of the non-Fermi liquid behaviour as transport due to the 
potential gapping of the Fermi surface in the CDW phase, whereas the 
resistivity derives from the remnants of the Fermi surface and its tem-
perature dependence captures the non-Fermi liquid property.
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Fig. 4 | Transport and thermodynamic measurements showing the non-
Fermi liquid behaviour. a, Resistivity of CuV2S4. The inset shows the power law 
exponent α of the resistivity as a function of temperature. The resistivity has 
a power law behaviour with α = 1.6 up to 20 K. b, Low-temperature resistivity 

plotted as a function of T1.6 and a linear fit. The inset shows the resistivity plotted 
as a function of T2 and a linear fit (blue solid line). c, Measured heat capacity of 
CuV2S4. The black arrow points to a CDW transition at around 81 K. d, Linear fit of 
Cp/T as a function of T2 to obtain the Sommerfeld coefficient γ.
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We now suggest a mechanism for the non-Fermi liquid behaviour 
based on magnetic frustration. Intuitively, flat bands could be repre-
sented in real space by molecular orbitals that are essentially localized. 
Such a mapping has recently been suggested for a simpler variant of the 
lattice with a flat band50–52. The topologically nontrivial flat bands need 
to be combined with other wide bands so that they can be represented 
by exponentially localized symmetry-preserving (Kramers-doublet) 
Wannier orbitals, with essentially localized Wannier states that pre-
dominantly come from the flat bands and more extended Wannier 
states that are primarily associated with the wide bands. This leads to 
a Kondo-lattice description, with the two sets of Wannier states acting 
as the analogue of the f and of the s, p and d orbitals, respectively, of 
the heavy-fermion materials. Importantly, in our pyrochlore case, the 
analogue of f moments are geometrically frustrated. This means that 
the mapped Kondo-lattice model is in the highly quantum fluctuating 
(large G) regime of the global phase diagram of the Kondo lattice53, 
such that the analogue of the f moments can form a spin liquid and 
the corresponding metallic phase can be a non-Fermi liquid phase. It 
has been proposed that such a phase is realized in the geometrically 
frustrated heavy-fermion material CePdAl (ref. 54), whose electrical 
resistivity has a non-Fermi liquid temperature dependence ρ ∝ Tα with 
an exponent α that is smaller than the 2 for a Fermi liquid. We propose 
that the same phase underlies the non-Fermi liquid behaviour we have 
observed here in CuV2S4.

Hence, from the combination of ARPES, DFT and auxiliary-spin 
calculations and from transport and heat capacity measurements, we 
understand CuV2S4 as a system in which non-Fermi liquid behaviour 
emerges from a cooperative result of quantum-interference-driven 
quenching of the electron kinetic energy and the Coulomb interactions 
of the V 3d t2g orbitals. The spectral evidence for this is a topological 
flat band that forms out of geometric frustration in the single-particle 
picture that is then renormalized and pinned to the Fermi level by Cou-
lomb interactions. CuV2S4 is a beautiful example of the design principle 
of creating strongly correlated topological flat bands purely out of a 
d-electron system by the cooperative intertwinement of reducing t 
and increasing U. Importantly, neither effect by itself can create the 
observed outcome: the destructive quantum interference by itself in 
CuV2S4 produces a flat band that is too far away from EF to affect trans-
port behaviour; the moderate Coulomb interactions can by themselves 
renormalize the dispersive bands to an extent but cannot bring a large 
DOS to EF. However, the renormalization of the topological flat band 
amplifies the correlation effects by renormalizing a large DOS to EF, 
pushing the system towards a regime in which emergent phases can 
arise from the large degeneracy produced in the vicinity of EF. In a larger 
scope, CuV2S4 belongs to a wider iso-structural family of spinel 124 
compounds that have a pyrochlore sublattice. LiV2O4 is another nota-
ble example for which strong correlation effects have been reported 
and with the same V pyrochlore sublattice55. The spinel 124 structural 
family provides a rich material platform for systematic explorations of 
the tuning of both Coulomb interactions and the quantum interference 
using charge carriers or magnetic doping. The topological nature of 
the bands further implies the existence of surface states that could be 
observed in future studies. In an even broader context, the pyrochlore 
lattice is one of the many geometrically frustrated lattices that host 
topological flat bands. Our work lays out a method for combining 
local Coulomb interactions and quantum interference to amplify the 
effects of correlation. A vast material base is yet to be explored for 
such constructs.
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Methods
Sample growth and characterization
Polycrystalline CuV2S4 was first prepared by a solid state method. The 
stoichiometric mixture of high-purity Cu (99.99%), V (99.9%) and S 
(99.9%) powders was ground and pressed into a pellet inside an argon 
glovebox. The pellet was sealed in an evacuated quartz tube and heated 
at 1,123 K for 1 week. The pellet was then ground again and sealed in an 
evacuated quartz tube with iodine as the transport agent. The tube was 
placed in a tube furnace for 2 weeks, with the hot end held at 1,123 K and 
the cold end at 1,023 K. Crystals with a maximum size of 1 × 1 × 1 mm3 
were found in the cold end.

ARPES measurements
ARPES experiments were performed at beamlines 5-2 of the Stanford 
Synchrotron Radiation Lightsource and the National Synchrotron Light 
Source II ESM beamlines of Brookhaven National Laboratory. Both 
beamlines were equipped with DA30 electron analysers. The results 
were reproduced at both facilities. The angular resolution was set to 0.1°. 
The total energy resolution was set to 20 meV or better. All the samples 
were cleaved in situ at 15 K and all the measurements were conducted in 
ultra-high vacuum with a base pressure lower than 5 × 10−11 Torr.

DFT calculations
All DFT calculations were performed with the Vienna ab initio simu-
lation package (VASP) code56,57 using the Perdew–Burke–Ernzerhof 
exchange-correlation functional58. The energy cutoff of the plane wave 
basis was 450 eV, and the 3D Brillouin zone was sampled with a k-point 
mesh of 6 × 6 × 6. All atoms were relaxed until the residual force was 
under 0.01 eV Å−1. A tight-binding model with 12 orbitals was fitted 
from the DFT results with Wannier functions, as implemented in the 
Wannier90 package59.

Auxiliary-spin calculations
We used the U(1) auxiliary-spin method60 to understand the effect of 
the correlation in CuV2S4. We considered a multiorbital Hubbard model:

H = H0 + Hint, (1)

where

H0 = ∑
ijαβσ

tαβij d
†
iασdjβσ +∑

iασ
(ϵα − μ)d†iασdiασ (2)

is the tight-binding model of 12 orbitals fitted from the DFT results. d†iασ 
is the creation operator in the ith unit cell, with σ denoting the spin and 
α = (o, s) enumerating both the orbital and sublattice indices, respec-
tively. In the calculation, the chemical potential μ was varied to fix the 
total filling in each unit cell to be 6. The sum of the coherent and incoher-
ent parts below the chemical potential was equal to 1.5 electrons per 
site. For the interaction part, we consider the following Hamiltonian

Hint = ∑
i,s
[ U
2
∑
oσ

niosσnios ̄σ

+ ∑
o<o′ ,σ

[U′niosσnio′s ̄σ + (U′ − J )niosσnio′sσ

−J(d†iosσdios ̄σd†io′s ̄σdio′sσ − d†iosσd
†
ios ̄σdio′sσdio′s ̄σ)]]

, (3)

where n = d†d is the density operator. U, U′ and J denote the intra-orbital 
Hubbard interaction, interorbital repulsion and the Hund’s coupling, 
respectively. During the simulation, we take U′ = U − 2J . In the 
auxiliary-spin method, the electron creation operator d†iασ = S+iασf

†
iασ , 

where the auxiliary spin S+ represents the charge degree of freedom. 
The spinon operator f† carries the spin degree of freedom. The band 
renormalization effect is signalled by the decreasing of the orbital 

resolved quasiparticle weight Zα = |S+α |2. The DOS is calculated by the 
integral over the single-electron spectral function with A(ω) = ∑kA(k, ω), 
where the single-electron spectral function A(k, ω) is obtained from 
the convolution of the auxiliary-spin and auxiliary-fermion Green’s 
functions60.
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