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Anisotropic magnetic excitations of a frustrated bilinear-biquadratic spin model:
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Elucidating the nature of spin excitations is important to understanding the mechanism of superconductivity in
the iron pnictides. Motivated by recent inelastic neutron scattering measurements in the nearly 100% detwinned
BaFe2As2, we study the spin dynamics of an S = 1 frustrated bilinear-biquadratic Heisenberg model in the
antiferromagnetic phase with wave vector (π, 0). The biquadratic interactions are treated in a dynamical way
using a flavor-wave theory in an SU (3) representation. Besides the dipolar spin wave (magnon) excitations, the
biquadratic interactions give rise to quadrupolar excitations at high energies. We find that the quadrupolar wave
significantly influences, in an energy dependent way, the anisotropy between the spin excitation spectra along
the (π, 0) and (0, π ) directions in the wave vector space. Our theoretical results capture the essential behavior
of the spin dynamics measured in the antiferromagnetic phase of the detwinned BaFe2As2. More generally, our
results underscore the importance of electron correlation effects for the microscopic physics of the iron pnictides.
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I. INTRODUCTION

In iron pnictides, superconductivity develops near an anti-
ferromagnetic order in the temperature-doping phase diagram.
It is therefore believed that understanding the nature of mag-
netic excitations is crucial for uncovering the mechanism of
superconductivity in these materials [1–6]. The iron pnictides
are bad metals. Their room temperature resistivity, about
0.4 m� cm, is larger than the Mott-Ioffe-Regel limit [2].
This implicates strong electron-electron scatterings that are
associated with the underlying electron correlations. In addi-
tion, the optical conductivity reveals a large reduction of the
Drude weight [7], signifying a small coherent electron spec-
tral weight w; correspondingly, the incoherent electron spec-
tral weight (1 − w) is larger than the coherent electron
counterpart. To the zeroth order in w, the system is located
at the Mott transition; the entire single-electron excitations
are incoherent and they give rise to quasilocalized magnetic
moments [8]. The coherent itinerant electrons with weight w

will influence the spin excitation spectrum at the linear and
higher orders in w [8–10]. The interactions between the local
moments include the J1-J2 Heisenberg interactions. Moreover,
in the regime near the Mott transition, the multiorbital nature
of the underlying electronic system implies that interactions
involving multiple spin operators such as the biquadratic K
coupling naturally arise and can be sizable [11]. A number
of additional perspectives have been taken to consider the
electron correlation effects [12–37].
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The parent 122 iron pnictides, such as BaFe2As2, exhibit a
(π, 0) antiferromagnetic (AFM) order at low temperatures [4].
Right at or slightly above the magnetic ordering temperature
TN , a tetragonal-to-orthorhombic structural transition takes
place, breaking the C4 spatial rotational symmetry. As a con-
sequence, the low-temperature spin excitations are anisotropic
in the wave vector space [38–46], with equal-energy intensity
distribution forming ellipses that are centered around the wave
vector (π, 0) at low energies [43,44]. With increasing energy,
the elliptic feature expands and the spectral weights transfer
from (π, 0) to (π, π ) of the Brillouin zone (BZ) [44,45].

These properties are well understood by an effective S = 1
bilinear-biquadratic Heisenberg model, for the quasilocalized
magnetic moments that are produced by electron correlations
in bad metals such as the iron pnictides [22,30–32]. The
Hamiltonian of this model reads as follows:

H = 1

2

∑
i j

{Ji jSi · S j − Ki j (Si · S j )
2}, (1)

where Ji j = J1 and Ki j = K1 are exchange couplings for the
nearest-neighbor (NN) bonds on a square lattice, and Ji j = J2

and Ki j = K2 are for the next nearest neighbor (NNN) bonds.
In the remainder of this manuscript, we refer to the above
model as the J-K model.

Because the biquadratic term involves higher order spin
interactions, it is difficult to handle within any conventional
spin-wave theory. For the iron pnictides, the spin dynamics in
its (π, 0) AFM phase was thought to be described in terms of
an empirical J1a-J1b-J2 model [38,47], where J1a and J1b refer
to the nearest-neighbor J1 interactions along the tetragonal a
and b axes, respectively. This effective description would arise
from the J-K model if one makes a static approximation to the

2469-9950/2020/101(2)/024510(8) 024510-1 ©2020 American Physical Society

https://orcid.org/0000-0002-6088-3170
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.024510&domain=pdf&date_stamp=2020-01-17
https://doi.org/10.1103/PhysRevB.101.024510


LIU, LU, DAI, YU, AND SI PHYSICAL REVIEW B 101, 024510 (2020)

biquadratic interactions [22], with the biquadratic interaction
being decomposed via a Hubbard-Stratonovich field (�i j =
〈Si · S j〉) that is determined self-consistently. However, the
J-K model is more fundamental than the J1a-J1b-J2 model. In
contrast to the latter, the J-K model respects the underlying
tetragonal lattice symmetry. For example, the J-K model is
able to describe the spin excitation spectrum in the paramag-
netic phase, in which J1a = J1b is dictated by the tetragonal
symmetry [22]. It is worth noting that the J-K model has
a very rich ground-state phase diagram. In addition to the
(π, 0) AFM order discussed here, it contains ground states
that explain the various emergent nematicity in iron-based
superconductors, such as in the bulk FeSe and heavily hole-
doped iron pnictides [28,37].

Recent inelastic neutron scattering (INS) measurements on
almost fully detwinned BaFe2As2 samples [48] provide new
clues to the nature of the spin excitations in these compounds.
Though the measured magnon dispersion in the AFM phase
can be well understood by the J1a-J1b-J2 Heisenberg model
up to about 100 meV, the anisotropy of the spectral weights
between (π, 0) and (0, π ) in the Brillouin zone (BZ) cannot.
It shows a strong energy dependence and, contrary to the
expectation of the J1a-J1b-J2 model, the observed local (i.e.,
q-integrated) spectral weights near (π, 0) and (0, π ) approach
each other at high energies [48].

Here we show that the seemingly unusual spin excita-
tion anisotropy can be naturally understood in terms of the
dynamics induced by the biquadratic interaction. We start
from the intuitive picture that the high-energy spin excitations
correspond to short-range and short-time fluctuations, whose
spatial profile will be similar to that of the paramagnetic
phase; in the latter case, the spin excitations of the J-K
model will be C4 symmetric, which is to be contrasted with
those of the J1a-J1b-J2 model that are inherently anisotropic.
With this picture in mind, we will analyze the biquadratic K
interaction of the S = 1 J-K model dynamically. The ensuing
quadrupolar excitations at high energies contribute to a spin
excitation spectrum with a considerably reduced anisotropy.
We calculate the dynamical spin susceptibilities from the mi-
croscopic model, with results that semiquantitatively account
for the puzzling neutron scattering results of the detwinned
BaFe2As2.

More specifically, we analyze the model, Eq. (1), in
terms of an SU (3) flavor-wave theory. The SU (3) representa-
tion [49], which treats the J and K terms on an equal footing,
has previously been used in studying the spin dynamics of
iron-based superconductors [28,30]. In the AFM ground state,
it incorporates the quadrupolar excitations along with the
magnetic dipolar (magnon) ones. While single quadrupolar
excitations are orthogonal to the dipolar channel, their con-
volution with the magnon excitations, for instance, does con-
tribute to the dipolar channel and, hence, to the dynamical spin
susceptibility. In this way, the high-energy quadrupolar exci-
tations significantly reduce the anisotropy of the high-energy
spin excitation spectrum; we find that the J-K model provides
an excellent understanding of the inelastic neutron scattering
experiments in the detwinned BaFe2As2 [48], on both the spin
excitation anisotropy and the spin spectral weights.

We stress that how to theoretically describe the spin excita-
tions in iron-based superconductors is an outstanding question

of the field. The new experiments [48] on the spin excitation
anisotropy in the detwinned BaFe2As2 are particularly sig-
nificant because they access the entire magnetic band [44].
Our analysis of this new experiment allowed us to extract
the effect of quadrupolar excitations in this canonical iron-
pnictide system. For the iron chalcogenide FeSe, the role
of antiferrroquadrupolar channel had already been empha-
sized [28]. In this sense, our work represents not only an
advance for the description of the iron pnictides but also a
way of unifying the overall understandings of both the iron
pnictides and iron chalcogenides.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the SU (3) representation for the S =
1 J-K model and describe the calculation of the spin excitation
spectrum within the SU (3) flavor-wave theory [28,30]. We
then present our main results, in Sec. III, on the magnetic
excitations of the J-K model. We show how the quadrupolar
wave affects the anisotropy of the spin excitation spectrum at
high energies, and discuss in detail the frequency dependence
of the spin spectral weights. Both are shown to describe well
the inelastic neutron scattering measurements in the AFM
phase of the detwinned BaFe2As2. In Sec. IV, we contrast
our results with those of weak-coupling analyses, describe
the underestimation of the spin spectral weights in an RPA
calculation and discuss its implications, before concluding the
paper in Sec. V.

II. MODEL AND METHOD

We start from the S = 1 J-K model defined in Eq. (1).
For BaFe2As2, the ground-state magnetic structure is a Q =
(π, 0) collinear AFM order. We assume that the correspond-
ing classical spin configuration of this ordered state has all
spins aligned in parallel along the Sz direction in the spin
space. To simplify the calculation of the spin excitations, we
first perform a site-dependent spin rotation about the y axis in
the spin space:

S̃i = R̂y(Q · Ri )Si. (2)

After this rotation, the spins in even columns stay unchanged
while those in odd columns are rotated by a π angle about the
y axis. Therefore, in the rotated configuration, all spins align
ferromagnetically along the (negative) S̃z direction, and the
Hamiltonian in the rotated basis keeps translational symmetry.
We introduce the SU (3) flavor-wave representation for the
(rotated) spin operators. This is formally done by rewriting the
spin operators in terms of three flavor boson operators [28,30]:

S̃+
i =

√
2(b†

i1bi0 + b†
i0bi1), (3)

S̃−
i =

√
2(b†

i1
bi0 + b†

i0bi1), (4)

S̃z
i = b†

i1bi1 − b†
i1

bi1, (5)

where b†
iα (α = 1, 0, 1) creates a boson of flavor α on site i.

The Hilbert space of the bosons is larger than the original
spin Hilbert space and includes unphysical states. To limit the
boson Hilbert space to its physical sector, a hard constraint is
imposed on each site

b†
i1bi1 + b†

i0bi0 + b†
i1

bi1 = 1. (6)
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The magnetic ground state in the rotated spin space is
polarized. In the bosonic representation this corresponds to
condensation of the b1 boson on each site, with the condensate
amplitude 〈bi1〉. Note that the condensation in the bosonic
representation depends on the ground state property in the
spin representation. For example, for a quadrupolar ordered
state that preserves time-reversal symmetry, the condensation
takes place in bx = (b1 + b1)/

√
2.

With the b1 boson being condensed in the AFM ground
state, we turn the constraint in Eq. (6) into the following:

bi1 ≈
√

1 − b†
i1bi1 − b†

i0bi0. (7)

Deep in the AFM phase bi1 ∼ O(1) and we can treat bi0

and bi1 as perturbations. Rewriting the spin Hamiltonian of
Eq. (1) in terms of the flavor bosons using Eqs. (3)–(5), and
expanding it in terms of bi0 and bi1 up to the quadratic order
using Eq. (7), we obtain

H ≈ H2 = 1

2

∑
k

∑
ν=0,1

[Akν (b†
kνbkν + b†

−kνb−kν )

+ Bkν (b†
kνb†

−kν + bkνb−kν )], (8)

where

Ak0 = 2J1 cos ky + 2K1 + 4(J2 + K2), (9)

Bk0 = −2(J1 + K1) cos kx

− 4(J2 + K2) cos kx cos ky, (10)

Ak1 = 8J2 − 2K1 cos ky + 4K2, (11)

Bk1 = −2K1 cos kx − 4K2 cos kx cos ky. (12)

With the b1 boson condensed, b†
0 corresponds to creating a

magnon (spin-1 dipolar excitation) that increases the spin
angular momentum S̃z by 1, whereas b†

1 corresponds to cre-
ating spin-2 quadrupolar excitation that increases S̃z by 2.
The dipolar and quadrupolar operators do not mix at the
quadratic order because they respectively carry spin-1 and
spin-2 angular momenta (and, in addition, they possess dif-
ferent parities [50]).

The quadratic Hamiltonian in Eq. (8) can be diagonalized
via a Bogoliubov transformation

bkν = ukνβkν + vkνβ
†
−kν, (13)

where

ukν =
√

Akν + ωkν

2ωkν

, (14)

vkν = −sgn(Bkν )

√
Akν − ωkν

2ωkν

, (15)

ωkν =
√

A2
kν − B2

kν . (16)

The diagonalized Hamiltonian reads

H2 =
∑

k

∑
ν=0,1

ωkνβ
†
kνβkν + C, (17)

FIG. 1. (a) Reciprocal space of the detwinned BaFe2As2 in the
(π, 0) AFM phase. The magnetic Bragg peak positions of the (π, 0)
magnetic order are marked as red dots. The integrated areas centered
at (π, 0) and (0, π ) in Eq. (22) are shown by red and green diamonds,
respectively. (b) Dispersions of magnons (solid line) and quadrupolar
wave (dashed line) of the bilinear-biquadratic model from the SU (3)
flavor-wave theory. See text for the model parameters. The dots
with error bars show the measured dispersion data of a detwinned
BaFe2As2 at T = 7 K, extracted from Ref. [48].

where C refers to the zero point energy of the AFM ordered
state, and βk0 and βk1 terms describe the excitations of dipolar
spin waves (magnons) and quadrupolar waves, respectively.

With the diagonalized Hamiltonian we can readily calcu-
late the dynamical structure factor (DSF) of spins, which is
defined as

S (q, ω) =
∫ ∞

−∞

dt

2π
eiωt 〈Sq(t ) · S−q(0)〉, (18)

where Sq = 1√
N

∑
k SieiRi ·q is the Fourier transformed spin

component.
In the SU (3) flavor-wave theory the DSF can be separated

into two parts, S (q, ω) = Sc(q, ω) + Si(q, ω). The coherent
part Sc(q, ω) comes from one-magnon process

Sc(q, ω) = (uq0 − vq0)2δ(ω − ωq0), (19)

whereas the incoherent part Si(q, ω) contains various two-
particle contributions.

Si(q, ω)

= 1

N

∑
k,k′=q−k

[(vk0uk′1 − uk0vk′1)2δ(ω − ωk1 − ωk′0)

+ 2(uk1vk′1 − vk1uk′1)2δ(ω − ωk1 − ωk′1)

+ 1

2
(uk0vk′0 − vk0uk′0)2δ(ω − ωk0 − ωk′0)], (20)

where the three terms from top to bottom on the right
hand side correspond to contributions from magnon-
quadrupole, two-quadrupole, and two-magnon processes, re-
spectively [30].

III. SPIN EXCITATION SPECTRUM

A. Magnon and quadrupolar-wave dispersions

To understand the spin excitations in iron pnictides we
start by calculating the spin-wave (magnon) and quadrupolar-
wave dispersions in the J-K model from Eqs. (8)–(17). The
result is shown in Fig. 1. The model parameters used in
this plot are J1 = −9.2 ± 1.2 meV, J2 = 50.0 ± 5.0 meV,
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FIG. 2. Constant energy cuts of the magnetic excitation spectrum in the wave vector space for the (π, 0) AFM phase of the J-K model [in
(a)–(d)]. For comparison, the corresponding experimental results are shown in (e)–(h). The experimental plots are reproduced from Ref. [48].

K1 = 68.4 ± 3.2 meV, and K2 = −36.4 ± 5.0 meV. They al-
low for a good fit to the experimentally observed magnon dis-
persion and, as we see below, define a model whose solution
provides a semiquantitative understanding of the experimen-
tally measured dynamical spin susceptibility. In Fig. 1, the
solid line shows the magnon dispersion ωk0. It clearly char-
acterizes the Goldstone mode near (π, 0) and a flat band top
near (π, π ). The dispersion agrees well with that measured in
the detwinned BaFe2As2, which is described by the symbols
in the figure [44,48]. In addition to the magnon branch, there
is a quadrupolar-wave branch in the SU (3) representation,
whose dispersion is shown as the dashed line in Fig. 1. The
quadrupolar excitation carries spin angular momentum 2, and
can be viewed as a two-magnon bound state. As such, it is
generically gapped in an AFM ordered phase. As shown in
Fig. 1, for BaFe2As2 the quadrupolar-wave excitation gap
is about 100 meV. We then expect it to primarily influence
the spin excitation spectrum at energies �100 meV. This is
the reason why the spectrum below about 100 meV (where
the magnon dispersion can be probed) can be well understood
by the spin-wave theory in the conventional SU (2) represen-
tation [22].

As seen in Eq. (19), the quadrupolar excitations cannot
be directly detected by inelastic neutron measurements since
quadrupoles carry spin-2 that do not directly couple to neu-
trons; the coherent part is only contributed by the one-magnon
process. However, two quadrupoles can form an effective
spin-1 object that transforms as a magnetic dipole moment
under SU (2) spin rotation operation; correspondingly, the
two-quadrupole processes do contribute to the dynamical
spin susceptibility. From similar considerations, the same
applies to the one-quadrupole-one-magnon processes. There-
fore, quadrupole excitations are manifested as the incoherent

continuum of the spin excitation spectrum and are expected
to appear at high energies in the inelastic neutron scattering
spectrum.

B. Dynamical structure factor

We have calculated the spin DSF of the J-K model using
Eqs. (18)–(20) within the SU (3) flavor-wave theory. The cou-
pling of the quasilocalized magnetic moments with coherent
electrons will produce nonzero damping rates [22,31], which
will broaden the δ functions into a damped harmonic oscillator
profile [44],

δ(ω − ωq0) ∼ 4

π

�qωωq0(
ω2 − ω2

q0

)2 + 4(�qω)2
, (21)

where �q = �0 + A cos2 qx

2 + B cos2 qy

2 . The damping pa-
rameters are taken from Ref. [44].

We show the constant energy cuts of the calculated DSF at
several excitation energies in Figs. 2(a)–2(d). At low energies,
the peaks of DSF form an ellipse centered at (π, 0) in the
first BZ. This is consistent with the (π, 0) AFM ground state
of the system, above which the low-energy excitations are
the Goldstone modes around the ordering wave vector (π, 0).
By contrast, the spin excitations around (0, π ) are gapped,
reflecting the broken C4 symmetry of the ground state. With
increasing energy the ellipse centered at (π, 0) expands as
shown in Figs. 2(a) and 2(b). Further increasing the energy
above 100 meV, going along the ellipse the spectral weight
in the qx direction largely decreases and the maximum of the
spectral weight is distributed at the long-axis (qy) direction.
The ellipse then effectively splits into two parts and the spec-
tral weights transfer along the qy direction towards (π, π ), as
shown in Figs. 2(c) and 2(d). These results capture the main
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features of the measured DSF of detwinned BaFe2As2 in the
corresponding energies shown in Figs. 2(e)–2(h) [48].

The DSF calculated from the SU (3) flavor-wave theory
also shows some interesting characteristics that are not cap-
tured by the conventional spin-wave theory. In particular, the
spectral weights close to (π, 0) and (0, π ) are very different
at low energies, but this anisotropy is reduced with increasing
energy. To see this clearly we calculate the local dynamical
susceptibilities χ ′′

Qi
(ω) over the wave vector regimes near

Q1 = (π, 0) and Q2 = (0, π ), respectively,

χ ′′
Q1(2)

(ω) =
∫

q∈BZQ1(2)
dqχ ′′

q (ω)∫
q∈BZQ1(2)

dq
, (22)

where the integration regime BZQ1(2) is shown in Fig. 1(a), as
red and green diamonds, respectively. An anisotropy factor is
defined as

�(ω) = χ ′′
Q1

(ω) − χ ′′
Q2

(ω)

χ ′′
Q1

(ω) + χ ′′
Q2

(ω)
. (23)

The energy dependence of the local susceptibilities and the
anisotropy factor � are shown in Fig. 3. Both local suscepti-
bilities develop broad peaks in between 150 and 200 meV, and
exhibit considerable spectral weights up to 300 meV. A major
contribution to the high-energy spectral weights comes from
the incoherent part of the DSF. The difference between the
two local susceptibilities is reduced with increasing energy,
and this is clearly seen from the decreasing anisotropy factor
� with increasing energy, as shown in Fig. 3(b). Such a strong
energy dependent spectral weight anisotropy is also observed
in the neutron scattering experiment, and our theoretical
results agree well with the experimental data. However, as
shown in Fig. 3(b), this feature is not captured by the effective
J1a-J1b-J2 model, in which the anisotropy as calculated from
the conventional spin-wave theory persists to high energies
owing to its intrinsic anisotropic nature [48].

To understand this energy-dependent spectral weight
anisotropy, we recall that the high-energy spectrum contains
or is even dominated by the contribution from the incoherent
part of the DSF. The latter contains various two-particle
processes. For a given set of (q, ω) there can be many
two-particle processes satisfying the energy and momentum
conservation, as shown by the additional summation over
k in Eq. (20). Some processes may contribute equally to
the local spectral weights near (π, 0) and (0, π ) and hence
reduce the spectral anisotropy. For example, for a given ω

the contribution to Si(π, 0) may come from quasiparticles
with momenta (π/2, π/2) and (π/2,−π/2), while the con-
tribution to Si(0, π ) may come from quasiparticles with mo-
menta (π/2, π/2) and (−π/2, π/2). Since (±π/2,±π/2)
are equivalent points in the BZ, their contributions to Si(π, 0)
and Si(0, π ) are equal. While all the three types of two-
particle processes in Eq. (20) in principle contribute to the
reduction of spectral anisotropy, the dominant contribution at
high energies involves the quadrupolar excitations.

IV. DISCUSSIONS

In this work, we have provided a semiquantitative under-
standing of the anisotropic spin excitation spectrum observed

FIG. 3. (a) Comparison of the energy dependence for the local
dynamical spin susceptibilities χQ1(2) , as defined in Eq. (22), with
Q1 = (π, 0) and Q2 = (0, π ) respectively marked as (1,0) and (0,1),
between the experimental data (symbols) and the SU (3) flavor-wave
theory results of the J-K model (lines). (b) Comparison of the
spin excitation anisotropy factor � between the experimental data
(symbols), the SU (3) flavor-wave results of the J-K model (black
solid curve), and the SU (2) spin-wave results of the J1a-J1b-J2 model
(pink dashed curve). The experimental data for χQ1(2) in (a) are
from Ref. [48], from which the experimental data for � in (b) are
determined according to Eq. (23). The result (pink dashed curve) for
� from an SU (2)-based calculation of the J1a-J1b-J2 model, shown
in (b), is also from Ref. [48].

by inelastic neutron scattering experiments in the detwinned
BaFe2As2. Treating the correlation-induced incoherent elec-
tronic excitations in terms of quasilocal moments, we deter-
mined the anisotropic dynamical spin susceptibilities of the
spin S = 1 J-K model. We did so by analyzing the biquadratic
K interaction dynamically, based on an SU (3) representation
of the spin. Our results, for both the momentum distribution
of the dynamical spin susceptibility and the spin excitation
anisotropy factor �, are consistent with the experimental
results measured in the detwinned BaFe2As2 [48].

The experimental results have alternatively been ana-
lyzed in terms of electron-hole excitations within a modified
random-phase approximation (RPA) calculation [48]. Weak-
coupling approaches, such as RPA calculations, represent an
alternative means to realize a (π, 0) AFM phase in the parent
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FIG. 4. Energy dependence of the local susceptibilities χ ′′: com-
paring the experimental data (symbols), the SU (3) flavor-wave the-
ory of the J-K model (solid lines), and the modified RPA results
(dashed lines) in absolute units. The experimental data and the
modified RPA results are from Ref. [48].

iron pnictides [51–53]. Given the relatively small size of the
Fermi pockets in these systems, the standard RPA calculation
was known to produce too small a spin spectral weight com-
pared to the experimental measurement. The modified RPA
calculation tried to remedy this by introducing a quasiparticle
weight z < 1 to mimic the interaction effects. The result
of this modified RPA calculation still underaccounts for the
experimentally measured dynamical spin susceptibility. This
is illustrated in Fig. 4, where we compare the experimental
spectral weight data (and our results for the J-K model) with
those from the modified RPA calculation in absolute units.
The substantial underestimation of the spin spectral weight
even in the modified RPA calculation points to the dominating
contributions from the incoherent electron excitations, which
are not captured by such calculations.

In our approach, we account for the spin excitations derived
from the incoherent part of the single-electron excitations
through quasilocalized magnetic moments and describe them
in terms of the J-K model. The semiquantitative success of
our calculations in capturing the experimentally measured
spin excitation spectrum reinforces the above conclusion. It
suggests that the overall spin dynamics of the iron pnictides in
an extended energy range is well described by approaches that
are anchored by the fluctuations of local moments. Because

the latter describes the spin degrees of freedom produced
by the correlation-driven incoherent electronic excitations,
our results also imply that the energy scales associated with
the anisotropic magnetic fluctuations will be very large as
has indeed been observed experimentally (and failed to be
described by the modified RPA calculations) [48]. All these
aspects underscore the importance of electron correlations in
the iron pnictides.

The above considerations reinforce the implications that
have been drawn from the presence of Mott insulating phases
in both the iron chalcogenide [54–59] and iron pnictide [60]
families. An exciting recent development in the same spirit
is the observation of magnetic and nematic orders in a
semiconducting iron chalcogenide KFe0.8Ag1.2Te2; Ref. [61]
exploration of the presumably anisotropic spin dynamics in
this and related systems promises to shed further light on the
role of electron correlations in the overall physics of both the
iron pnictides and chalcogenides.

We close this section by noting several additional points.
First, as we alluded to in the Introduction, the discrepancy of
the observed spin excitation anisotropy with the description
by the J1a-J1b-J2 model is intrinsic and, in particular, is not a
reflection of any particular parameter choice. The large J1a-J1b

anisotropy that is needed to understand the spin-wave disper-
sion inherently implies a large spin excitation anisotropy even
for the high energy magnetic excitations at the magnetic zone
boundary, in contrast to the experimental observation.

Secondly, and in contrast to the J1a-J1b-J2 description,
the Hamiltonian of the bilinear-biquadratic J-K model itself
respects the tetragonal symmetry. Even with the spontaneous
symmetry breaking, in the (π ,0) antiferromagnetic phase, the
emergence of quadrupolar excitations hastens the restoration
of the tetragonal symmetry at high energies, precisely as the
experimental results show. In this sense, the measurement of
the high-energy spin excitation anisotropy under the detwin-
ning condition is currently the most direct way of probing the
quadrupolar excitations in the iron pnictides.

Our theory implicates a quadrupolar wave excitation exist-
ing above 100 meV, though it is hidden to neutron scattering
measurements. In principle, the quadrupolar and dipolar mo-
ments may mix under a certain magnetic field [62,63], thereby
activating the quadrupolar excitations in magnetic dipolar
probes such as neutron scattering experiments. This effect
would be significant only when the Zeeman energy of the
applied magnetic field is comparable to the typical magnetic
energy scale, as happens in heavy fermion systems [64,65].
For the canonical iron pnictide system we discussed, how-
ever, the magnetic bandwidth is larger than 100 meV, and
the involved exchange coupling is on the order of 10 meV.
These energy scales are much larger than that associated
with the typical strength of the magnetic field applied in
neutron scattering experiments. Hence, within the available
experimental capacities, we do not expect the application of an
external magnetic field to help resolve the quadrupolar wave
excitations more explicitly.

V. SUMMARY

To summarize, we have investigated the spin excitations
of an S = 1 bilinear-biquadratic Heisenberg model in the
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antiferromagnetic phase. We find that the magnetic excita-
tions consist of a dipolar spin wave (magnon) at low en-
ergies and a quadrupolar wave at high energies. Though
the quadrupolar excitations cannot be directly detected by
neutron scattering, we show that they can significantly af-
fect the spin excitation spectrum and, in particular, reduce
the anisotropy at high energies between the local suscep-
tibilities near (π, 0) and (0, π ) in the wave vector space.
Our theoretical results capture the essential features of the
spin excitations of the detwinned BaFe2As2. This suggests
that the incoherent part of the single-electron excitations,
which give rise to quasilocalized magnetic moments, dom-
inates the contributions to the spin excitations [9,10]. Cor-
respondingly, this implies that electron correlations play a
central role in the microscopic physics of the iron-based
superconductors.
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