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Search for orbital magnetism in the kagome superconductor CsV3Sb5 using neutron diffraction
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As many kagome metals, the topological superconductor AV3Sb5 with (A = K,Rb,Cs) hosts a charge density
wave. A related chiral flux phase that breaks the time-reversal symmetry has been further theoretically predicted
in these materials. The flux phase is associated with loop currents that produce ordered orbital magnetic
moments, which would occur at the momentum points, M, characterizing the charge-density wave state.
Polarized neutron-diffraction experiments have been performed on an assembly of single crystals of CsV3Sb5

to search for such orbital magnetic moments. No evidence for the existence of a three-dimensionally ordered
moment is found at any temperature at the first M1 = (1/2,0,0) point in the Brillouin zone within an excellent
experimental uncertainty, i.e., m = 0 ± 0.01 μB per vanadium atom. However, the data might be suggestive of a
putative magnetic orbital moment in the second Brillouin zone at M2 = (1/2,1/2,0) at the detection limit of the
experiment. Some loop currents patterns flowing only on vanadium triangles are able to account for this finding
suggesting an ordered orbital magnetic moment of, at most, ∼0.02 ± 0.01 μB per vanadium triangle.

DOI: 10.1103/PhysRevB.110.195109

I. INTRODUCTION

The search for orbital loop currents (LCs) is a long-
standing quest in both topological and correlated quantum
matter. This exotic state of matter has been put forward to
explain the enigmatic pseudogap phase of high-temperature
cuprate superconductors [1,2]. Over the past few years, this
idea has gained in momentum primarily through the observa-
tion of an intra-unit-cell magnetism using polarized neutron
diffraction (PND) [3,4]. The observed hidden order parameter
and its associated thermodynamic signatures [5,6] correspond
to a magnetoelectric state that breaks both parity and time-
reversal symmetries as evidenced by different experiments
[3,7,8]. Similar measurements in the iridates. indicate the
existence of an orbital magnetism consistent with loop cur-
rents in Sr2IrO4 [9]. It is thought to exist in a wider class
of quantum materials beyond superconducting cuprates and
oxides. The clearest example in favor of orbital magnetism
is the observation of anomalous Hall effect in twisted bilayer
graphene [10], in the absence of any spin magnetism. Other
examples mix the orbital response with the spin magnetism
as it is recently established in Mn3Si2Te6, where the control
of the colossal magnetoresistance was demonstrated to arise
from an exotic quantum state that is driven by ab plane chiral
orbital currents flowing along the edges of MnTe6 octahedra
[11]. In honeycomb lattices, such flux phases were further
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suggested to interact with Dirac fermions and produce the
quantum anomalous Hall effect [12].

The quasi-two-dimensional (2D) kagome lattice materi-
als have gained the spotlight over the last decade because
of their rich ground states stemming from their nontrivial
band structure. In particular, the quasi-2D kagome lattice
compounds AV3Sb5 with (A = K,Rb,Cs) represent a new
family of kagome metals [13] with intertwined topological
charge density wave (CDW) order around TCDW ∼ 93 K in
the Cs compound and superconductivity at low temperature
(below ∼2.5 K) [14]. The topological CDW is associated
with a Fermi surface instability at the M point of the hexag-
onal structure as observed by scanning tunneling microscopy
(STM) [15,16]. Using x-ray diffraction, the CDW in CsV3Sb5

was later proven to be three-dimensional, with a 2 × 2 × 2
superstructure [17] larger than the 2 × 2 × 1 superstructure
infferred from STM. There are, however, some recent claims
that the three-dimensional ordering of the CDW can be sen-
sitive to stacking along the c axis [18,19] and possibly to the
way samples are prepared. Further, resonant x-ray studies at
high pressure demonstrate that the 2 × 2 × 1 CDW associated
with the vanadium kagome sublattice coexists with a Sb 5p
electron assisted 2 × 2 × 2 CDW [20]. Interestingly, neutron
diffraction on an assembly of CsV3Sb5 single crystals re-
ported an associated lattice distortion in the CDW state where
the magnitude of the 2 × 2 × 1 superstructure was found
to be larger [21] in contrast to the x-ray diffraction result.
Additionally, rotational symmetry breaking from C6 to C2

symmetry in the CDW state, suggesting a nematic phase, has
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been reported through spectroscopic-imaging STM [22] and
birefringence measurements [23]. However, recent transport
elastoresistivity measurements indicate no breaking of the
twofold rotational symmetry below the CDW state, meaning
no sign of nematicity [24].

These materials are further characterized by a large anoma-
lous Hall conductivity [25]. Accordingly, a chiral CDW
has been first reported using STM in KV3Sb5 with modu-
lated intensity of the different charge peaks [16]. However,
further scanning tunneling measurements that used spin-
polarized tips show no trace of the chiral flux current
phase in CsV3Sb5 [26] within their experimental uncer-
tainty. Despite these experiments, these materials represent
new platforms to investigate the interplay between topology,
unconventional superconductivity and strong electron corre-
lations where localized spin magnetism from vanadium atoms
is readily thought to be absent as concluded from the macro-
scopic magnetic susceptibilty [13]. Consistently, a muon spin
spectroscopy (μSR) experiment in polycrystalline KV3Sb5

samples does not show any static long-range magnetism in
KV3Sb5 [27] and neutron powder measurements concluded
that short-range antifferromagnetic ordering is absent [13].
Therefore, local moment spin magnetism from d electrons
does not show up in any magnetic measurements leaving open
the possibility of weaker orbital magnetism.

Different approaches were employed to study the mecha-
nism of electronic instabilities and explain the charge ordering
and superconductivity, leading to the emergence of nematic
chiral charge order, charge bond order, and the appearance
of orbital moments [28–34]. Chiral flux phases, with or-
bital loop currents, have been theoretically predicted in these
materials [28,31–34]. The proposed chiral flux state breaks
time-reversal symmetry (TRS) and results in an anomalous
Hall effect. That is consistent with the observation of a
huge enhancement of the anomalous Hall effect at the CDW
temperature [25], which in principle, requires TRS break-
ing in the CDW state. A few recent μSR studies report
time-reversal symmetry breaking below the charge order tem-
perature (around 80–95K depending on the material) [35–38].
This is actually interpreted as originating from loop current
states and is reminiscent of those reported in cuprates [2,4].
For instance, Mielke et al. [35] propose a current pattern
among the triangles of vanadium atoms but the exact LC
pattern can only be deduced from diffraction techniques.
Additionally, electronic magneto chiral anisotropy gives con-
vincing evidence for the TRS breaking phase, although its
onset temperature is still under debate [39]. Even more re-
cently, an optical manipulation of the CDW state RbV3Sb5

suggests an unusual piezo-magnetic response that requires
TRS breaking [40]. Last, another recent study combining
STM and μSR demonstrates time-reversal symmetry breaking
in the superconducting state in Ta-substituted CsV3Sb5 [41].

Consistently, torque magnetometry experiments report the
existence of an odd-parity order parameter appearing at a
temperature T ∗ = 130 K > T CDW above the CDW order
temperature [42], suggesting that TRS is broken below T ∗.
Using symmetry arguments, hidden Dirac multipoles, involv-
ing anapoles, have been also predicted to occur in AV3Sb5

[43] to explain the µSR results. However, recent resonant
x-ray experiments [20,44] only show resonant enhancement at

the Sb L edge at the 2 × 2 × 2 superstructure and no resonant
feature at the V K edge. The resonant effect at the Sb L edge
is attributed to anisotropic contributions from the different
Sb sites further away from the kagome lattice. As a result,
for both CDW superstructures, no particular sensitivity to
magnetic contributions (which would lead to time-reversal
breaking) was reported [44], possibly due to the weakness
of the expected feature. Spectroscopic-imaging STM and
angle-resolved photoemission spectroscopy reveal as well the
existence of small reconstructed Fermi pockets [45]. They
are due to Fermi surface reconstruction that is induced by
the 2 × 2 × 1 CDW state that could acquire orbital magnetic
moments if time-reversal symmetry is broken in the CDW
state [33].

The orbital magnetic moments can be detected using
polarized neutron diffraction although the experiment is
challenging due to the weakness of the expected orbital mag-
netism. The original theoretical estimate of the order of the
magnitude of the foreseen ordered moment is ∼0.01e/(2h̄)ta2

[31], where a is the lattice constant and e is the electron charge
and t corresponds to the electronic hopping parameter of
about 1 eV, yielding an estimate of ∼0.04 μB. Closed in-plane
loops should also lead to magnetic moments pointing perpen-
dicular to the hexagonal plane. Depending on the correlations
between loop currents in neighboring unit cells, the structure
factor calculation gives magnetic intensity at different points
in Q = (H, K, L) space. For the chiral flux phase proposed in
these materials [16,31,33], the CDW modulates the interac-
tions between unit cells, with a magnetic intensity expected at
half-integer H such as the M points where the CDW occurs
[17,21].

In this paper, we report a quantitative study of CsV3Sb5

single crystals with polarized neutron diffraction. Despite
numerous efforts, we could not observe any reliable mag-
netic signal at the M point in the first brillouin zone, M1
= (1/2,0,0), corresponding to the propagation wave vector
of the unconventional chiral CDW in the frustrated kagome
lattice. From the threshold of our statistical error bars, one
can determine an upper limit of the magnetic moment which
has to be lower than the experimental uncertainty of ∼0.01 μB

per vanadium at this Q position. Other magnetic patterns that
preserve the lattice symmetry have been investigated as well
with no indication of magnetism. However, the data might be
suggestive of a weak magnetic signal at the M point, M2 =
(1/2,1/2,0), in the second brillouin zone. A conservative esti-
mate of the magnetic signal suggests a magnetic moment of,
at most, ∼0.02 ± 0.01 μB per formula unit. Such a low value
sounds consistent with a few Gauss internal field estimated
at the muon stopping site from μSR experiments [35]. Our
finding questions the different loop current models that have
been discussed in the kagome superconductors. In particular,
a certain number of loop currents patterns flowing only on
vanadium triangles can account for our polarized neutron data,
in contrast to LCs patterns flowing on hexagons.

II. BACKGROUND

A. Neutron cross section and polarization

It is straightforward to consider that LCs phases can be
tested by neutron diffraction as the closed circulating charge
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TABLE I. Magnetic form factor of V4+ orbitals (from Ref. [48]) at different key positions in Q points of the CsV3Sb5 hexagonal reciprocal
lattice

Momentum position: (H, K, L) M1 = (1/2,0,0) M2 = (1/2,1/2,0) (1,0,0) (1,1,0)

Q (Å−1) 0.66 1.143 1.32 2.287
f (Q) 0.97 0.92 0.89 0.72
f (Q)2 0.95 0.85 0.80 0.52

loops give rise to a magnetic field, in principle perpendicular
to the loop. In addition to the interaction between neutron and
atomic nuclei, the neutron spin interacts with any source of
magnetic fields present in the materials. The only experimen-
tal limits are the available neutron flux and the sample mass.
Usually, one considers the magnetic field B generated by un-
paired electron spins (S). However, orbital currents contribute
equally. The magnetic field probed by the neutron spin at any
point R can actually be decomposed in two terms [46,47] as:

B(R) = BS + BL = μ0

4π

{
2 μB∇

(
S × R̂

R2

)
− I

dl × R̂
R2

}
,

(1)

where μ0 is the vacuum permeability, R̂ is a unit vector in
the direction of R, and I is the current intensity along the
current path dl. The first term comes from the spin of unpaired
electrons and the second one from their orbital motion. The
scattering due to the loop currents belongs to the second
category.

The neutron intensity is given by the neutron cross section,
which in case of elastic magnetic scattering and polarized
neutron can then be written, in general, as [46,47]:

dσ

d�

∣∣∣
mag

=
∑

τ

|FM (Q)|2δ(Q − τ )

|FM (Q)|2 = r2
0 f (Q)2| < ±|σ.B(Q)|±,∓ > |2. (2)

FM (Q) is the magnetic structure factor at the momen-
tum tranfer Q. τ represents the propagation wave vector of
the LCs state where the magnetic signal is expected in mo-
mentum space. σ are Pauli matrices describing the neutron
spin which can take the two states: |+ > and |− >. Spin-
flip (SF) and non-spin-flip (NSF) cross sections are defined
when the neutron spin is flipped or conserved after interaction
with the sample, respectively. The Pauli matrices are related
to the neutron moment as μN = −γμNσ where μN is the
nuclear magneton and γ = 1.913 is the gyromagnetic ratio
for the neutron spin. The prefactor r0 = 0.54 × 10−12 cm in-
cludes all multiplying factors discussed so far and corresponds
to the neutron magnetic scattering length for a magnetic mo-
ment of 1 Bohr magneton (μB) (r0/γ is the classical radius of
the electron).

f (Q) in Eq. (2) is the atomic magnetic form factor [by
definition, f (0) = 1]. In the present case, it corresponds to the
Fourier transform of magnetic atomic orbitals involved in the
loop currents state, here associated with the vanadium orbitals
on which the LCS are assumed to flow. Because the kagome
AV3Sb5 materials exhibits no spin magnetism with a mix of
V 4+ and V 5+ orbital states [13], one considers the magnetic
form factor of the magnetically active V 4+ state. That form

factor is tabulated in the crystallographic tables [48]. We show
in Table I the values of that form factor for relevant Q points
of the hexagonal reciprocal lattice of CsV3Sb5.

The key term in Eq. (2) is B(Q), usually called the in-
teraction vector [46,47], which is proportional to the Fourier
transform of the real space magnetic field distribution B(R),
at the wave vector Q. Following Eq. (1), B(Q) can be, in
general, written as a sum of the spin part with the spin mo-
ment, MS = 2μBS, and the orbital part (for which we keep on
purpose the notation in terms of currents),

B(Q) =
∑

j

exp(−iQ.r j )

{
Q̂ × MS × Q̂ − i

I

2μB

Q̂ × dl j

Q

}
,

(3)

where Q̂ = Q/Q. The sum is made over all magnetic sites, j,
within each magnetic unit cell. There are a few different ways
to express the neutron cross section arising from the orbital
part. It is generally assumed in neutron textbooks [46,47],
that one can define an orbital moment, ML, associated to the
magnetic field distribution of the orbital part. In the low-q
limit, the orbital moment generally corresponds to the atomic
orbital moment [47]. This is misleading for the case of loop
currents because the currents flow on more than one atomic
orbital. Here, in particular, one would consider the vanadium
hexagons or triangles of the kagome lattice. In cuprates [2,4],
the LCs involve hybridizations of copper d and oxygen p
orbitals. Clearly, the currents geometry plays an important
role that impacts the momentum dependencies of the structure
factor. It is, however, useful to describe the LCs contribution
by an orbital moment located at the geometric center of the
closed loops. In such a case, the magnetic cross section is
taken to be of the same general form whatever the source
of magnetism. One then arrives to the simple form that the
neutron interacts with a moment, M = MS + ML, which is
simply the sum of the spin moment and the orbital moment,
and B(Q) takes the simple form,

B(Q) =
∑

j

exp(−iq.r j )(Q̂ × Mj × Q̂). (4)

That expression fully defines the magnetic structure fac-
tor for a set of magnetic moments, Mj, in the unit cell.
One can define m⊥(Q) = Q̂ × Mj × Q̂ which denotes the
Fourier transform of the magnetic moment distribution per-
pendicular to the unity vector Q̂ = Q/|Q| = (H, K, L)/|Q|.
m⊥(Q) includes the neutron orientation factor [46,47], that
implies, as usual, that one measures in neutron diffraction only
the magnetic component perpendicular to the wave vector
Q̂, owing to the dipolar nature of the magnetic scattering
potential.
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FIG. 1. (a) Stacking along the c axis and projection in the (a, b) basal plane of the hexagonal structure of CsV3Sb5. (b) Two-dimensional
reciprocal space of the hexagonal latttice. The real space directions (a, b) and reciprocal directions (a∗, b∗) are represented as well as the
equivalent M1 (in blue) and M2 (in green) points. (c) Photograph of the sample assembly mounted in the (H, H, L) plane. CsV3Sb5 single
crystals are glued on both faces of the Al plate.

B. Calculation of the structure factor for different loop
current patterns

A certain number of loop current states have been proposed
to exist in the chiral charge density wave states [28,31–34]
of CsV3Sb5. These states break time-reversal symmetry and
lattice translational symmetry as they all quadruple (2×2) the
hexagonal unit cell shown in Fig. 1(a). Examples of such LCs
states are shown in Figs. 2–5. We here evaluate the magnetic
structure factor, B(Q), for these different LCs configurations.
Classically, the closed loops form an orbital moment pointing
in principle perpendicularly to the hexagonal plane. This is the
quantity that is experimentally probed in neutron diffraction
experiments.

Before going into the detailed description of the LCs pat-
terns, let us stress that they are all supposed to be 2D with no
correlation between the hexagonal planes. The structure factor

is then assumed to be L independent in these calculations.
The correlation between the vanadium planes stacked along
the c axis would, of course, also play a role [see Fig. 1(a)].
It may be either in-phase or out-of-phase leading to magnetic
contributions at L integer (L = 0) or half-integer (L = 1/2) as
argued from μSR data [36]. In this section, we consider only
the scattered intensities in the 2D hexagonal plane.

These 2D patterns can be classified in different types
depending on how the different vanadium atoms are con-
nected by charge currents within the hexagonal plane in
the 2×2 unit cell. There are many possible orbital currents
configurations in the kagome lattice, considering either the
vanadium atoms from hexagon or triangle blocks. Loop cur-
rents can develop on the different links between vanadium
atoms. The only constraint is that the current distribu-
tion within the 2×2 unit cell is such that there is a
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FIG. 2. (a) LCs with only moment on hexagons in the 2×2 unit cell for an antiferromagnetic model that breaks C6 rotational symmetry
with �1 + �2=0. (b) Calculated magnetic intensity in reciprocal space with similar intensities at both M1 and M2 points. Due to the broken
C6 rotational symmetry, magnetic intensities are not expected to be the same at all equivalent M points. As for all figures where the magnetic
intensity is calculated, it is given in absolute units (mbarn) for a single unit cell using Eq. (12) assuming an ordered moment associated with
�1 of 0.02 μB.

conservation of currents at each lattice node, so that there is
no net magnetic moment within the 2×2 unit cell. For each
moment distribution, one can estimate the magnetic neutron
structure factor in the 2D (H, K ) hexagonal plane. The 2D
reciprocal space of the atomic hexagonal cell is shown in
Fig. 1(b). The zone boundary M points where the CDW oc-
curs are represented. There are six equivalent points, M1 =
±(1/2, 0, 0) ≡ ±(0, 1/2, 0) ≡ ±(1/2,−1/2, 0) in the first
Brillouin zone and six other points M2 = ±(1/2, 1/2, 0) ≡
±(1,−1/2, 0) ≡ ±(1/2,−1, 0) in the next Brillouin zones.
In the following, we consider various loop current models
involving either the vanadium hexagons or mixing triangles
and hexagons.

1. Loop current patterns involving vanadium hexagons

The first example to be considered is when loop currents
are running only on vanadium hexagons or only on vanadium
triangles although this has not been proposed in any theory,
yet. We here explicitly consider the cases of currents running
around the hexagons for a sake of clarity. Similar structure
factors can be obtained when loop currents concern only the
vanadium triangles that will be discussed in Sec. V. There are
four hexagons in the 2×2 unit cell [Fig. 2(a)): one can assume
that two hexagons exhibit a current running clockwise and two
others with currents running anticlockwise: Two hexagons
then carry a moment +mhex and the two others −mhex. This
model somehow reminds the antiferromagnetic spin ordering

FIG. 3. (a) LCs configuration with moments only on hexagons in the 2×2 unit cell with a symmetry similar as the models proposed [32,33]
for the LCs in kagome metals with �1 + 3�2 = 0. (b) Calculated magnetic intensity in reciprocal space with similar intensities at both M1

and M2 points. To calculate the magnetic intensity in absolute units, the magnetic moment associated with �1 is set to 0.02 μB.
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FIG. 4. (a) LCs pattern in the 2×2 unit cell proposed in the model of Feng et al. [31] with �1 + 2�2 = 0. (b) Calculated magnetic intensity
in reciprocal space with the maximum intensity at M1 and zero intensity at M2. Additional intensities are observed at the Bragg position such as
(1,0,0) and equivalent points. To calculate the magnetic intensity in absolute units, the magnetic moment associated with �1 is set to 0.02 μB.

in cuprates. A simple calculation leads to a structure factor:

B(Q) = 4mhex sin πH sin πK. (5)

The magnetic intensity map obtained from this structure
factor multiplied by the vanadium form factor f (Q)2 is shown
in Fig. 2(b). For that phase, the C6 axis symmetry of the
hexagonal lattice is broken: in reciprocal space, meaning that
only one of the three independent M points leads to magnetic
scattering. The magnetic intensity is found to be maximum at
M1 = (1/2,−1/2,0) and at M2 = (1/2,1/2,0), whereas zero
intensity is found at equivalent points. It is worth stressing
right away that one cannot distinguish these three different
orientations experimentally, since they are equivalent from
the atomic structure point of view. Indeed, for the magnetic
scattering, this would result in an average intensity map of

the three equivalent points due to the existence of magnetic
domains.

Inspired by the model of Lin and Nandkishore [32],
other LCs distribution on hexagons that respect the C6 axis
symmetry are also possible. Quite similar to the theoretical
approaches [32,33], one hexagon can carry a moment mhex,
whereas the 3 others have only − 1

3 mhex [Fig. 3(a)]. In the
2D (H, K ) hexagonal plane, this leads to a magnetic neutron
structure factor that can be written as,

B(Q) = 4
3 mhex(1 − expiπ (H+K ) cos πH cos πK ). (6)

From this moment distribution, the neutron magnetic inten-
sity map obtained from the squared structure factor multiplied
by the vanadium form factor f (Q)2 is represented in Fig. 3(b).
It exhibits again maxima at both M1 = (1/2,0,0) and M2 =

FIG. 5. (a) LCs configuration with moments only on hexagons in the 2×2 unit cell with a symmetry corresponding to the proposed models
[32,33] for the LCs in kagome metals. (b) Calculated magnetic intensity in reciprocal space with the maximum intensity at M1 and nearly zero
intensity at M2. To calculate the magnetic intensity in absolute units, the largest magnetic moment associated with �1 is set to 0.02 μB.
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(1/2,1/2,0) which only differ by the form factor term. All the
six equivalent M1 and M2 show the same intensity respecting
the C6 axis symmetry unlike the previous model.

2. Loop current patterns involving vanadium hexagons
and triangles

The second type of patterns mix both hexagons and tri-
angles sub-blocks. There were originally proposed by Feng
et al. [31], who considered LCs with currents running around
either given vanadium triangles or hexagons [Fig. 4(a)]. There
is a complete cancellation between the hexagon magnetic
moment mhex and the magnetic moment on each triangle
mtr: mhex + 2mtr = 0. From this moment distribution, one can
also calculate the magnetic neutron structure factor in the 2D
(H, K ) scattering plane. One simply obtains:

B(Q) = mhex

[
1 − cos

(
4π

3
(H − K )

)]
. (7)

The squared structure factor, again multiplied by the vana-
dium form factor f (Q)2 to get the neutron intensity map, gives
the neutron intensity shown in Fig. 4(b) where the strongest
magnetic intensity is found at M1 = (1/2,0,0), whereas no in-
tensity is expected at M2 = (1/2,1/2,0). All the six equivalent
M1 show the same intensity respecting the C6 axis symmetry.

A third example is when loop currents occur around
all sub-blocks either the hexagons or the triangles [32,33]
(Fig. 5). A flux exists even if the currents are not closing in all
subpatterns. This is allowed in quantum mechanics although
that would give zero flux in a classical picture. In such a case,
the currents on the different arms of the triangles/hexagons
are different, and the line integral of the current around any
given triangle/hexagon does not vanish even when the arrows
do not form a loop. For instance in Ref. [32], when the cur-
rents, indicated by coloured arrows, are not the same in the
different links and do not seem to circulate, there is still a
nonzero flux, although it gives rise to a weaker flux. In the
2×2 plaquette, the total flux over all sub-blocks is always
zero. Interestingly, in Lin and Nandkishore [32], the fluxes
can be reassembled in four different groups, each having the
same pattern as the model discussed above of Feng et al.
[31] [Fig. 4(a)]. As a result, this leads to the same structure
factor as the one shown in Fig. 4(b). In Ref. [33], the null
sum of fluxes translates into �1 + 3�2 + 2�3 + 6�4=0 for
all hexagons and triangles of the 2×2 plaquette [Fig. 5(a)].
The resulting neutron intensity map, plotted in Fig. 5(b), is
similar to the previous example with stronger peaks at the M1
points and very weak intensity at the M2 positions.

III. EXPERIMENTAL DETAILS

A. Sample preparation and characterization

Single crystals of CsV3Sb5 of less than half a mm3

size each used in the present study were grown by a self-
flux method as described elsewhere [15]. Transport data for
CsV3Sb5, confirms the existence of CDW order below TCDW

= 95 K and superconductivity below Tc � 2.5 K [21].
The single crystals were next glued and coaligned onto alu-
minum plates with CYTOP (Amorphous Fluoropolymers)
glue. About 400 individual single crystals were co-aligned on

four aluminum plates to form an assembly with a volume of
0.11 cm3 corresponding to a resulting total mass of ∼0.7 g.
The same sample assembly was previously used in our phonon
study with inelastic neutron scattering [21].

Two different mounting of the CsV3Sb5 assembly were
used to access the different M points of the Brillouin zone:
M1 = (1/2,0,0) or M2 = (1/2,1/2,0), allowing us to investi-
gate different loop currents models. In both cases, we could
access the L dependencies to test possible doubling of the
unit cell along c∗. First, the whole sample array was oriented
with [H, 0, 0] and [0, 0, L] reciprocal lattice directions of the
hexagonal crystal structure in the horizontal scattering plane
to measure the M1 = (1/2,0,0) point. In this scattering plane,
the full crystal assembly was fitting inside a He cryostat. The
sample mosaic spread was found to be 3.5◦ as in our previous
experiment [21]. In a second experiment, it was not possible
to fit the whole assembly into the cryostat as we had to turn
the aluminum plates by 30 ◦ to get the [H, H, 0] and [0, 0, L]
reciprocal lattice directions in the horizontal scattering plane
to be able measure the M2 = (1/2,1/2,0) point. Only one
aluminum plate with the more single crystals glued on it was
used and turned by 30 ◦ [see sample photograph in Fig. 1(c)].
The resulting mosaic spread was a bit better of ∼2.5 ◦ for
a mass of about 40% of the previous one. As the sample is
an assembly of smaller single crystals, the magnetic domains
discussed above would be equally populated. In the following,
the momentum transfer Q = Ha∗ + Kb∗ + Lc∗ is denoted as
(H, K, L) in reciprocal lattice units (r.l.u.) of the hexagonal
lattice with a = b = 5.495 Å, and c = 9.309 Å.

B. Polarized neutron scattering experiments

The polarized neutron measurements were performed on
the neutron Triple Axis Spectrometer CRG-CEA IN22 lo-
cated at Institut Laue Langevin in Grenoble (France). The
measurements were carried out in elastic conditions with the
final neutron wave vector (k f ) equal to the incident one (ki).
The neutron wave vector was k f = 2.662 Å−1, yielding an
energy resolution of about ∼1 meV. To get a clean beam, two
pyrolitic graphite (PG) filters, installed on the scattered beam,
were used to remove higher order harmonics. In particular,
we put two PG filters to avoid second order harmonic from
the nuclear peaks as we expect magnetic intensity at the zone
boundary (M points) of the Brillouin zones.

The beam was polarized and analyzed using Heusler
crystals, Cu2MnAl, with the (1,1,1) Bragg reflection. The
instrument is equipped with longitudinal XYZ polarization
analysis (XYZ-PA) (see Ref. [49]), a powerful technique to
selectively probe and disentangle the magnetic response from
the nuclear one with no assumptions on the background. Both
SF and NSF scans were done in order to crosscheck the ab-
sence of nuclear scattering at magnetic positions. According
to conventional notations, X denotes the direction of the neu-
tron polarization parallel to the transferred momentum Q, Y,
and Z polarization directions are both perpendicular to Q. Y
is the in-plane orthogonal direction and Z is perpendicular to
the scattering plane. The spin-flip, SFX,Y,Z , and non-spin-flip,
NSFX,Y,Z , intensities for the different neutron polarizations
were measured in order to be able to perform the XYZ po-
larization analysis.
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TABLE II. Summary of flipping ratios (FR) measured on IN22 along the three directions for both setups: Helm (meaning using the
Helmholtz-like coils) or CRYOPAD. The flipping ratios were either measured on Bragg peaks of the sample or on the coherent scattering of
a quartz specimen, where (H, K, L) units are still given within the reciprocal lattice of CsV3Sb5. Typical error bars on the flipping ratios are
given for each setup.

Setup Sample Bragg peak ≡ (H, K, L) FRX FRY FRZ

CRYOPAD CsV3Sb5 (2,0,0) 16 ± 0.15 16.1 ± 0.2 16.1 ± 0.2
Helm CsV3Sb5 (1,1,0) 15.9 ± 0.1 15.6 ± 0.1 16.1 ± 0.1
Helm Quartz (1/2,1/2,0) 14 ± 0.3 13.8 ± 0.4 14.6 ± 0.4

The experiments were performed in three different experi-
mental runs using two different setups to control the neutron
polarization at the sample position. We utilized either an
Helmholtz-like sets of coils or a spherical polarization anal-
ysis device, CRYOPAD [50], with zero magnetic field at the
sample chamber. In principle, CRYOPAD offers a better neu-
tron polarization homogeneity when turning the polarization
along the three different directions. However, both setups give
very similar neutron polarization in all three directions. The
flipping ratios FR = ( NSFX,Y,Z

SFX,Y,Z
) for both setups were measured

on the sample Bragg peaks as well as on a quartz specimen.
The polarization is then found to be quite homogeneous along
the three directions (FR = 16) on Bragg peaks for both setups
(see the Table II for actual values). However, as usual, a
slighly better polarization homogeneity is obtained with CRY-
OPAD compared to the Helmholtz-like coils setup. Lower
flipping ratios are also found using the quartz specimen. This
is expected to be the case as the amorphous quartz scatters at
all scattering angles corresponding to a broader Q resolution
compared to the Bragg peaks of CsV3Sb5, then leading to a
more imperfect polarization. Even if the polarization is very
homogeneous with tiny variations of the flipping ratio on
turning the polarization (see Table II), we apply corrections
from imperfect neutron polarization as discussed in Ref. [51].
This correction has negligible effects on the deduced magnetic
intensity.

C. Polarization analysis

XYZ-polarization analysis (XYZ-PA) of polarized neutron
diffraction allows us to distinguish between the nuclear and
the magnetic contributions in the scattered intensity [46,47].
For a nuclear scattering, the neutron spin remains unchanged
and the scattered intensity is always measured in the NSF
channel. For the magnetic scattering, the intensity in each
channel strongly depends on the direction of the neutron po-
larization Pn because neutron spins are described by Pauli
matrices σ in Eq. (2), whom quantization axis is set by
Pn. The scattered magnetic intensity is thus proportional
to |σ.m⊥(Q)|2. As a result of the Pauli matrices, only the
components of m⊥(Q) perpendicular to the neutron spin
polarization vector Pn are Spin-Flip, ISF

mag(Pn) ∝ (m⊥)2 −
(m⊥. Pn)2, whereas the component INSF

mag (Pn) ∝ (m⊥. Pn)2

does not flip the neutron spin and remains in the NSF channel.
To perform a standard XYZ polarization analysis, one then
sets Pn in the laboratory referential with the three orthogonal
unitary directions (X,Y,Z) defined above.

For the X polarization, Pn parallel to Q̂, the full magnetic
scattering is SF only. Let us consider the case of a generic

magnetic moment with components along three Cartesian di-
rections. In the case of the hexagonal lattice of the kagome
metals, these directions correspond to either (a, b∗, c), mean-
ing, m = (ma, mb∗ , mc), or (a∗, b, c). For LCs phases where
there is no net magnetic moment, we are in the case where
all magnetic moments are antiparallel to a single direction.
In such a case, the magnetic intensity measured in the SF
channel, at a momentum position Q = (H, K, L), for the X
polarization, ISF

mag(X ), can be expressed [47] as:

ISF
mag(X ) ∝

[
1 −

∣∣∣∣2π

a

H

Q

∣∣∣∣
2
]

m2
a +

[
1 − 4

3

∣∣∣∣2π

a

H/2 + K

Q

∣∣∣∣
2
]

m2
b∗

+
[

1 −
∣∣∣∣2π

c

L

Q

∣∣∣∣
2
]

m2
c . (8)

In contrast, the scattered intensities in the two comple-
mentary Y and Z polarizations probe only subparts of this
cross section [Eq. (8)], depending on both (i) the direction
of the polarization and (ii) the scattering plane of the given
experiment, i.e., how the sample is oriented relative to the
(X,Y,Z) referential. In the limit L = 0, which is relevant for
the discussed experiments, ISF

mag(Z ) probes the c axis magnetic
contribution, m2

c , which corresponds to the expected moment
orientation for the LCs states discussed above.

All these cross sections are measured for each polarization
on top of a background as ISF

meas(X, Y, Z) = ISF
mag(X, Y, Z) +

IBG(X, Y, Z). IBG(X, Y, Z) is assumed at first approximation
to be independent of the polarization. The total scattered
magnetic intensity, Imag, is next extracted such as (see
Refs. [49,52,53] for more details about the analysis of the
neutron data):

Imag = 2 ISF
meas(X) − ISF

meas(Y) − ISF
meas(Z). (9)

This expression is very useful as it gives access to the
intrinsic magnetic intensity by removing the background
contribution, simply by assuming the same background for
the three polarizations. In practice, however, the background
in the three polarizations can be sligthly different and the
background contribution to Imag does not completely cancel.
Therefore, even in the absence of magnetism, it may give rise
to a shift from zero of the baseline, which is generally ex-
pected to be temperature independent, and we proceed under
that assumption. This effect can be particularly sizable when
the magnetic signal is very weak as we face in the present
study. This is one of the most important challenges of such
PND experiments.
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D. Intensity calibration

To determine the absolute amplitude of the magnetic in-
tensity, we need (i) to estimate the magnetic structure factor
in absolute units and (ii) to take into account the instrument
resolution. First, the magnetic scattering cross section [46,47],
Imag, reads in absolute units:

Imag = �S
Ncell

V0
R0(Qm)IM (Q)

= �S
Ncell

V0
R0(Qm)r2

0 f (Q)2 |B(Q)|2
4

, (10)

where �S corresponds to the neutron flux at the sample posi-
tion in neutrons per second per barn (1 b = 10−24 cm2), Ncell is
the number of unit cells (formula units) in the sample, V0 is the
volume of the unit cell, IM (Q) = r2

0 f (Q)2|B(Q)|2/4, where r0

denotes the neutron magnetic scattering length, r2
0 = 290 mb,

f (Q) is the magnetic form factor, and B(Q) is the magnetic
structure factor defined in Eq. (4) and calculated in Sec. II B
for various LCs patterns in the 2×2 plaquette. As a result, one
needs to divide |B(Q)|2 by 4 because IM is given per formula
unit. The expected Q dependence of IM (Q) is represented in
Figs. 2–5. Assuming that the magnetic order of LCs is long
range, corrections from resolution effects are also included at
each Q position through the factor R0(Qm) which normalized
the triple-axis resolution function [54] for a Bragg peak. Using
a homemade program that follows the procedure described by
Hennion [55], R0(Qm) is readily calculated from the beam
geometries and sizes of all diffracting elements (monochro-
mator, sample, and analyzer) from the neutron source to the
detector. The sample is described by an effective cylinder.
The program is backed up by measuring incoherent scattering
and Bragg widths: a few parameters are adjusted to match the
measured resolution. Typical errors and uncertainties about
the resolution are then less than 10%. Further, as one com-
pares below the ratio of two different Bragg peaks resolution
in Eq. (12), the systematic error about the calculation of R0 is
even less and has negligible impact on the upper bound of the
magnetic intensity.

To estimate IM (Q) in absolute units, one needs to calibrate
the magnetic intensity by the nuclear intensity of a reference
Bragg peak whose intensity IB can be written as a function of
its nuclear structure factor, FN , as

IB = �S
Ncell

V0
R0(QN )|FN |2. (11)

|FN |2 can be obtained by a simple calculation of the struc-
ture factor or using a structure factor calculation software like
VESTA. It is expressed in barns. The magnetic intensity in
barns, IM (Q), is simply deduced from Eqs. (10) and (11) as

IM (Q) = Imag

IB

R0(QN )

R0(Qm)
|FN |2 = r2

0 f (Q)2 |B(Q)|2
4

. (12)

The left-hand side of Eq. (12) is determined experimen-
tally, whereas the right part is computed for the different
LCs models. This calculated magnetic intensity is the quantity
shown in all color map figures of the paper with a color scale
given in mbarns assuming a magnetic moment of 0.02 μB.

IV. RESULTS

We performed a series of polarized neutron diffraction
experiments on the CRG-CEA intrument IN22 to cover the
various loop currents patterns discussed above in Sec. II B.
We had to mount the sample in different geometries to access
the various points in Q space.

A. Absence of magnetic scattering at the M1 point

Following the proposed LCs models [28,31–34], we first
investigated the full CsV3Sb5 sample in the (H, 0, L) scatter-
ing plane as a magnetic intensity is systematically expected
at M1 in the topological CDW state. The experiment has
been performed in two separated runs. The run-1 was a quick
measurement to cover different points in Q space, whereas the
second one focused on the possible magnetic scattering at the
M1 = (1/2,0,0) and Q = (1/2,0,1/2) points. The counting
time for the second run was noticeably longer: typically 30
minutes per point for run-1 and up to 5 hours per point for run-
2. The Figs. 6(a) and 6(b) show for Run-1 the L dependence
at H = 0.5 of both the non-spin-flip and spin-flip intensity for
the three polarization states. A broad peak maximum at L = 0
is observed in both channels. The spin-flip intensity does not
change with the polarization which indicates that this signal is
not magnetic in origin within the error bars at any of these
Q (at any L value), in particular at (1/2,0,0), (1/2,0,1/2),
and (1/2,0,1) where a magnetic contribution could have been
expected in the models. Similar measurements for H = 1.5
(not shown) indicate the same trend.

In Run-2, we repeated these measurements to improve the
statistics, namely the L scan at H = 0.5 but over a much
limited L range. The result in the spin-flip channel for a
polarization along X where the magnetic signal should be
maximum is shown in Fig. 6(c). The scan performed at 5 K
did not show any structure. The scan exhibits a weak sloping
background due to the sample geometry as the sample is
made from an assembly of four different Al plates. Further,
polarization analysis using Eq. (9) is shown in Fig. 6(d) from
which the magnetic intensity is readily extracted without as-
sumptions on the background. These two figures indicate no
sign of a magnetic signal at M1. However, it should be stressed
that the baseline for the background in Fig. 6(d) is found
negative. As discussed above in Sec. III C, this is related to
small differences in the background contribution in the three
polarizations that Eq. (9) does not remove. In order to be able
to give an upper limit of the magnetic intensity, we perform
a statistical analysis of Fig. 6(c) and Fig. 6(d). We fit these
curves along L by the following simple function:

I = A exp(−αL2) + B + sL. (13)

The first term represents the possible magnetic intensity
with an amplitude A and a broadening factor α. α cannot
be determined experimentally due to the limited number of
points and is set to a value constrained by the sample mosaic-
ity. The other terms are the background where the slope s [not
zero only for the SFX intensity of Fig. 6(c)] is also constrained
by the difference of the extreme points at L = ±0.5. In the fit
shown in Fig. 6, there is therefore only two free parameters:
A and B. Fitting Fig. 6(c) by Eq. (13) gives A = 0.2 ± 3.
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FIG. 6. L dependence of the neutron intensity around M1 at T = 4 K: (a) (Run-1) Scan along Q = (0.5, 0, L) in the non-spin-flip channel
NSFX . (b) (Run-1) Scans along Q = (0.5, 0, L) in the spin-flip channel for the three polarizations. (c) (Run-2) Scans along Q = (0.5, 0, L)
in the spin-flip channel for the X polarization. (d) (Run-2) Magnetic intensity obtained by polarization analysis [Eq. (9)]. The data in
(c) and (d) have been corrected from imperfect polarization. The lines in (c) and (d) are fits using Eq. (13) as explained in the text. The
intensities are all reported for a monitor Mn = 1e6 corresponding to a counting time of 317 s although the counting time of the Run-1
experiment was about 30 minutes per point, whereas it was about 5 hours per point in the Run-2 experiment. In (d), the reference line
for zero magnetic signal is negative (−4.8 cnts) due to inhomogeneous background for the different polarizations as explained in the main
text.

Within error bars, no magnetic signal is observed in these two
experiments at the M1 point as well as at the point H = 1/2
and L = 1/4 or 1/2. This contrasts with the LCs theoretical
predictions [31–33] for which one expects the largest mag-
netic contribution at the M1 point (see Figs. 3–5).

Although no magnetism is observed, one can give an upper
value of the magnetic moment from these measurements. For
that, we need to calibrate the neutron intensities by using
nuclear Bragg peaks (see Sec. III D). In the (H, 0, L) plane,
one can use two different strong Bragg peaks for that pur-
pose as listed in Table III. The calibration of the intensity
gives an upper limit for the magnetic intensity to be 0.075
mb on average that one conservatively rounds up to ∼0.1
mb and from which one can make in Sec. V an estimate

of the upper limit of the magnetic moment for different
models.

B. Temperature dependence of the spin-flip and non-spin-flip
intensities at M1 point

To better characterize the absence of the magnetic order-
ing, we study the temperature dependencies of the spin-flip
intensity at the M1 point. In particular, according to torque
magnetometry experiments, TRS is broken at a temperature
T ∗ = 130 K > T CDW with a maximum effect above ∼80 K
[42] leaving open the possibility of a magnetic intensity max-
imum around 100 K at the M1 position which would allow
us to reconcile with the theoretical predictions of a stronger

195109-10



SEARCH FOR ORBITAL MAGNETISM IN THE KAGOME … PHYSICAL REVIEW B 110, 195109 (2024)

TABLE III. Calibration of the magnetic intensity at the M1 =
(1/2,0,0) point deduced from the nuclear Bragg peak (H, 0, L). The
intensity in absolute units is given in barns per formula unit of
CsV3Sb5 as deduced from Eq. (12). The intensities are all expressed
for a monitor Mn = 1e6 corresponding to a counting time of 317 s.
The upper limit of the experimental magnetic intensity is estimated
from the fit using Eq. (13) of Fig. 6(c).

(H, 0, L) |FN |2 (b) R0(QN ) IB R0(QM ) Imag (5 K) IM (mb)

(0,0,4) 10.1 0.54 154 000 1.78 < 3 <0.06
(3,0,0) 11.3 0.35 71 000 1.78 < 3 <0.09

magnetic signal at M1. Figure 7(a) represents the SF and NSF
intensity for a polarization along X at the M1 = (1/2, 0, 0)
as a function of temperature. One notices a decreasing of the
raw intensity on warning similar in both channels which are
simply scaled by a factor 2 at all temperatures. Additional
measurements for the polarizations along Y and Z (not shown)
indicate that the signal is not magnetic at any temperature.
One then does not observe any maximum in the SF intensity in
the range 80–130 K as it would be expected from the reported
torque magnetometry data [42].

C. Possible weak magnetic scattering at the M2 point

Next, the sample was installed on IN22 in a different scat-
tering plane, (H, H, L), in order to access M2 = (1/2,1/2,0)
and related points. The Fig. 7(b) shows the L dependence
at H = K = 0.5 of the non-spin-flip intensity with a broad
peak maximum at L = 0 similar to what is observed in the
other scattering plane [Fig. 6(a)]. No other noticeable fea-
ture is sizable. The L dependence of the spin-flip intensity is
shown in Fig. 8(a) at 5 K. As in the other scattering plane
the spin-flip data has been corrected for imperfect polariza-
tion. Although the counting time is similar to the data in the
(H, 0, L) plane [Fig. 6(a)], the counts are weaker as only one
Al plate [Fig. 1(c)], with CsV3Sb5 samples glued on both

faces, was mounted with a total sample mass of about ∼2/5
of the whole sample.

The L scan in the spin-flip channel is suggestive of a weak
magnetic signal at the M2 point (1/2,1/2,0) in the SF X L
scan at 5K [Fig. 8(a)]. The reported magnetic signal seems
to be consistent with a long-range three-dimentional ordering
although one cannot prove that point due to the scarcity of
data points. The polarization analysis at 5 K still using Eq. (9)
for the same scan [shown in Fig. 8(c)] suggests as well a
magnetic contribution at the same point confirming the SF X

scan. Further, the same scan SF X at 110 K [Fig. 8(b)] shows
a reduction of the magnetic feature at M2 = (1/2, 1/2, 0).
Again, this trend is confirmed by the polarization analysis at
110 K where no feature at L = 0 is observed [Fig. 8(d)]. A
long counting time was necessary to achieve this result (about
5 hours per point for each polarization) underlining the limit
and challenge of the experiment. At both temperatures, the
reference line for the background is consistently shifted by a
negative constant for all L 
= 0 similar to what is found above
for the M1 study [Fig. 6(d)]. Relative to the background level,
we are a bit more sensitive to such small effects here because
the Helmholtz-like coils was used to control the neutron po-
larization where the background is less homogenous when
turning the polarization compared to CRYOPAD. Due to the
weakness of the magnetic signal and the shift of the reference
line, it is unfortunately not possible to extract with enough
confidence the magnetic moment direction.

Following the procedure discussed above for M1, we fit the
data with Eq. (13) with only two free parameters. So fitting
Figs. 8(a) and 8(b) gives on average A = 3.6 ± 1.5 at 5 K and
A = 1 ± 1.5 at 110 K. Allowing to have a third parameter in
the fit, the slope s, does not change these estimates. Similar
fits of the magnetic intensity obtained by polarization analysis
[Figs. 8(c) and 8(d)] give similar amplitudes within error bars.
As very similar slopes are present for the three polarizations,
the slope simply vanishes by applying Eq. (9) [Figs. 8(c) and
8(d)]. It is important to note that the statistical analysis of
Fig. 8(c) does not indicate a definitive peak, as it is based
on a single data point. Consequently, we cannot be 100%

FIG. 7. (a) Temperature dependence of the SF (left scale) and NSF (right scale) intensities at M1 = (0.5,0,0) for a polarization along X .
(b) L dependence of the non-spin-flip intensity at M2 = (0.5,0.5,0) for a polarization along X .

195109-11



WILLIAM LIÈGE et al. PHYSICAL REVIEW B 110, 195109 (2024)

FIG. 8. L dependence of the magnetic intensity at Q = (1/2,1/2,L): (a-b) Scans along Q = (0.5, 0.5, L) in the spin-flip channel SFX in
CsV3Sb5 at (a) T = 5 K and (b) T = 110 K. [(c) and (d)] Magnetic intensity obtained by polarization analysis [Eq. (9)] at (c) T = 5 K and
(d) T = 110 K. The data in (a)–(d) have been corrected from imperfect polarization. The lines in (a)–(d) are fits using Eq. (13) as explained
in the text. The intensities are all reported for a monitor Mn = 1e6 corresponding to a counting time of 235 s although the total counting time
reaches about 5 hours/point for each polarization. In (c) and (d), the reference line for zero magnetic signal is negative due to inhomogeneous
background for the different polarizations as explained in the main text. That corresponds to a consistent shift by −3.6 cnts at both temperatures
for L 
= 0 for zero magnetic signal (corresponding to the dashed line).

certain that a peak is present. However, when we impose the
background line at 5 K based on the value obtained at 110 K
(where no signal is detected), the statistical analysis suggests a
weak magnetic contribution with a maximum at L = 0, which
is consistent with the SF X scan shown in Fig. 8(a). However,
it should be stressed that if the temperature independence of
this background is violated for some unknown reasons, then
the analysis may not be accurate.

Again, one can calibrate the neutron intensities to esti-
mate the absolute amplitude of the possible magnetic intensity
using strong nuclear Bragg peaks and in the hypothesis of
a long-range three-dimentional magnetic ordering. In the
(H, H, L) plane, one can use two different strong Bragg peaks

for that purpose as listed in Table IV. A conservative value of
the magnetic scattering is then about 0.25 ± 0.11 mb from
which one can make in Sec. V an estimate of a magnetic
moment for the different models.

D. No magnetic scattering at the � point

All the examples discussed so far are LC states correspond-
ing to q = 1/2 antiferromagnetic (AFM) order, i.e., magnetic
order where the ordering propagation vector is the same as
the CDW state. So, for completeness, we checked as well the
possibility of a magnetic scattering at q = 0 which respects the
lattice symmetry, like the LCs phase predicted and observed
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TABLE IV. Calibration of the magnetic intensity at the M2 =
(1/2,1/2,0) point deduced from the nuclear Bragg peak (H, H, L).
The intensity in absolute units, given in barns per formula unit of
CsV3Sb5, is deduced from Eq. (12). The intensities are expressed for
a moniteur Mn = 1e6 corresponding to a couting time of 235 s. The
magnetic intensity estimation is obtained from the fits using Eq. (13)
of Figs. 8(a) and 8(c).

(H, H, L) |FN |2 (b) R0(QN ) IB R0(QM ) Imag (5 K) IM (mb)

(0,0,4) 10.1 0.54 77785 1.09 3.6 ± 1.5 0.23 ± 0.11
(1,1,0) 11.3 0.62 89065 1.09 3.6 ± 1.5 0.26 ± 0.11

in cuprates [2–4]. We then consider patterns which respect the
hexagonal lattice symmetry. It should be stressed that this has
not been proposed theoretically in kagome metals. Anyway,
it corresponds to the case of orbital currents decorating all
triangles of the kagome lattice with currents running on two
vanadium triangles of a single unit cell in clockwise or anti-
clockwise directions [Fig. 9(a)] quite similarly to the case of
cuprates [4]. In such a case, the structure factor reads B(Q) =
2mtr sin( π

3 (H − K )). The deduced magnetic intensity, shown

in Fig. 9(b), is zero at all M points and is maximum at Bragg
positions with integer (H, K, L), like Q = (1, 0, 0).

Figure 9(c) shows the temperature dependence of both SF
and NSF intensities at the very weak nuclear Bragg peak
Q = (1,0,0) (about 10−4 weaker than the strong Bragg peaks
listed in Table III). No sizable additional intensities are ob-
served in the SF channel at low temperature compared to the
reference intensity at 100 K (above the CDW ordering temper-
ature which is about 94 K in that sample [21]). This indicates
no magnetic contribution in agreement with a polarization
analysis [Fig. 9(c)] where also no difference of intensities
is observed between the three different polarizations, XYZ.
Other momentum positions like (1,0,1/2), (1,0,1) or even Q =
(1,1,1) in the (H, H, L) scattering plane were also measured
using XYZ polarization analysis. No sign of magnetism was
evidenced at any of these momenta within our experimental
accuracy. As the Bragg peaks at Q = (1,0,0) and Q = (1,1,1)
are very weak, the accuracy of these measurements is quite
good due to the absence of any polarization leakage. For the
Bragg position Q = (1,0,0), R0 = 0.97 and with the estimate
Imag < 5 cnts for a monitor M = 1e6 [Fig. 9(c)], one gets an

FIG. 9. (a) LCs configuration respecting the lattice symmetry. (b) Related calculated intensity with maxiumum at the Bragg position
Q = (1, 0, 0). (c) Temperature dependence of The Bragg peak Q = (1, 0, 0) of both spin-flip (with the three XYZ polarizations) (left scale)
and non-spin-flip (right scale) intensities. The intensities are all reported for a monitor Mn = 1e6 corresponding to a counting time of 317 s
although the counting time could reach 30 minutes per point for the most counted points.
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average of IM < 0.25 (mbarns) to be compared with about
1–2 mb observed in cuprates [52]. This leads to a moment
of less than 0.03 μB per vanadium triangle corresponding to
the model discussed above and using the form factor given in
Table I.

V. DISCUSSION

The main finding of our polarized neutron diffration ex-
periments in CsV3Sb5 is that the magnetic signal, if it exists,
is unfortunately very weak, being actually at the limit of the
current best experimental PND capabilities. Although the re-
ported magnetic intensity is very low, it is worth emphasizing
that we do not meet here the experimental complications,
faced for the study of q = 0 intra-unit-cell magnetism in
cuprates [52], related to the neutron polarization inhomo-
geneities, as the magnetic signal is expected in kagome metals
at the Brillouin zone boundaries where no nuclear Bragg
peaks are present. The experimental challenges are instead
rather the available neutron flux and sample mass and mosaic-
ity. Therefore, the fact that we observe a noticeable difference
between both scattering planes enables one to draw meaning-
full conclusions.

First, no sizable magnetic signal is observed at M1 com-
pared to M2. If we are likely able to determine a weak
magnetic scattering at M2 of ∼0.25 ± 0.1 mb, then a similar
magnetic amplitude at M1 = (1/2,0,0) can be dismissed as the
experimental limits are similar. Clearly, the magnetic signal is
absent at the M1 points in the first Brillouin zone questioning
the theoretical LCs models in the kagome metals [31–33]
as none of the patterns of Figs. 2–5 are consistent with the
neutron data as a stronger intensity is always expected at M1
compared to M2. This suggests that the orbital moments, if
they exist, do not occur on vanadium hexagons. This is for
example the case in simpler models of moments on hexagons
shown in Figs. 2 and 3 where the magnetic intensity at M1 and
M2 should be similar. At least, it gives an upper limit for the
putative magnetic moment. That value depends on the consid-
ered model, mainly depending on how many orbital moments
are present in the 2×2 unit cell. Using that estimate and with
the form factor given in Table I which is | f (Q)|2 = 0.95 at
M1 = (1/2, 0, 0), applying Eq. (7), one gets for Im < 0.1 mb
at 5 K mhex < 0.02 μB for the model of Feng et al. [31]
(Fig. 4). For the case of Refs. [32,33] (Fig. 5), 12 orbital
moments contribute even if only three of them are actually
clearly larger. In the model of Lin and Nandkishore [32],
one would get mhex < 0.012 μB as there are more magnetic
fluxes contributing to the structure factor. For the magnetic
flux distribution proposed by Zhou and Wang [33], a similar
orbital moment upper limit is obtained for the strongest orbital
moment associated with the �1 flux. In the simpler model
of Fig. 2, one needs further to consider the three magnetic
domains: that leads to mhex < 0.016 μB per formula unit in
that case.

Among the different models discussed so far, the model
of Feng et al. [31] (Fig. 4) is giving the higher upper limit
of mhex < 0.02 μB per formula unit which is well below the
experimental limit of STM with spin-polarized tips [26] of
about � 0.2 μB. Making the assumption that the magnetic
moments are only carried out by the vanadium atoms, it gives
a tiny orbital moment of less than 0.01 μB per vanadium

atom. This value is substantially lower than what the different
theories have been expecting [31–33]. In particular, Zhou
and Wang [33] estimated an intrinsic thermodynamic orbital
magnetization of 0.022 μB per vanadium atom, whereas the
experimental limit is ∼0.005 μB per vanadium for this model.
However, to determine the amplitude of the magnetic mo-
ment through the article, we assume a long-range magnetic
ordering. It is worth stressing that in case of finite magnetic
correlation lengths, the extracted magnetic moment could be
larger. The low value of the measured orbital moment might
be as well related to the presence of impurities. It was indeed
recently theoretically argued [56] that the LCs state might be
extremely sensitive to a small number of impurities and that
the amplitude reduction originates from the nonlocal contri-
bution from the itinerant circulation of electrons.

Second, another conclusion is that no magnetic signal oc-
curs at various nonzero L values in both scattering planes. The
only L location where a signal can be extracted is at L = 0
at the position M2 = (1/2, 1/2, 0). In particular, nothing is
observed at L = 1/2 that suggests no doubling of the unit
cell along the c axis contrary to the discussion made from
the μSR data [36]. We also do not see any magnetic signal
at L = 1/4 as it has been suggested for the CDW [18]. If
measurable, then the magnetic signal is correlated in-phase
from one hexagonal plane to the next one along the c axis.
The magnetic ordering, if it exists, exhibits therefore in-phase
three-dimensional correlations.

Third, the data might be suggestive of putative orbital
magnetism at the M2 points in the second Brillouin zones,
suggesting a TRS breaking at low temperature in agreement
with μSR experiments [35–38]. However, this should not be
confused with the controversial reports of TRS breaking by
Kerr effect [23,57], which is characteristic of a global TRS
breaking, whereas neutron diffraction data as well as muons
are indicative of a local TRS breaking. Our finding of the
strongest magnetic intensity at the M2 points in the second
Brillouin zone might be related to the recent ARPES observa-
tion of pockets [45] (confirmed by quasiparticle interference
in STM) in the CDW state not observed in the first zone, but
that appears at some (not all) of the predicted locations in the
second zone in agreement with the theoretical prediction of
the location of the pockets with a largest spectral weight [45].

Actually, such a result of an orbital magnetism at M2 =
(1/2, 1/2, 0) can be explained by LCs patterns flowing only
on the triangles, as for instance it has been discussed in the
context of μSR experiments [35]. To be more explicit, one
first considers the simplest LCs phase breaking C6 discussed
above for the hexagons (Fig. 2). Instead of putting moment at
the center of the hexagons, one now decorates all vanadium
triangles of the 2×2 unit cell by magnetic moments with
the symmetry of Fig. 2 and still with the constraint that the
moment sum is zero (4�1 + 4�2 = 0). Two situations, shown
on Fig. 10(a) and 10(c), are possible. One can repeat the cal-
culation of the magnetic structure factor: for the configuation
of Fig. 10(a), Eq. (5) becomes

B(Q) = 8mtr sin πH sin πK sin

(
π

3
(2H + K )

)
. (14)

For the configuration of Fig. 10(c), the factor sin( π
3 (2H +

K )) in Eq. (14) is changed by cos( π
3 (2H + K )). The
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FIG. 10. [(a) and (c)] Two LCs patterns with only moments on triangles in the 2×2 unit cell for an antiferromagnetic model that breaks the
C6 rotation symmetry with �1 + �2=0. [(b) and (d)] Calculated magnetic intensity map in reciprocal space for both models. In (b), a larger
intensity is found at M2 compared to M1. To calculate the magnetic intensity in absolute units, the magnetic moment associated with �1 is set
to 0.02 μB.

calculated neutron intensity is reported in Fig. 10(b) and
Fig. 10(d) for both configurations, respectively. One sees in
Fig. 10(d) that the pattern of Fig. 10(c) is again inconsis-
tent with our experimental data, whereas Fig. 10(b) gives a
noticeably larger intensity at M2 = (1/2, 1/2, 0) compared
to M1 = (1/2,−1/2, 0) that is favored by the pattern of
Fig. 10(a) due to an additional decoration between triangles.
This is clearly compatible with the experiment where only the
magnetic intensity at M2 is sizable.

Using the above estimate of 0.25 mb and with the form
factor given in Table I which is | f (Q)|2 = 0.85 at M2, one
gets mtr = 0.014 ± 0.009 μB per triangle at 5 K for the model
of Eq. (14) where one has further to consider that we probe
at M2 = (1/2, 1/2, 0) only 1/3 of the magnetic intensity due
to the existence of magnetic domains. Actually, another LCs
configuration, based on the proposed models [32,33] of Fig. 5,
can also account for the neutron data where only moments on

triangles are considered with the constraint 6�3 + 2�4 = 0,
that is akin to the structure shown in Fig. 11(a). The related
calculated neutron intensity of 11(b) suggests a map also
compatible with the neutron data from which one can estimate
at 5 K mtr = 0.024 ± 0.013 μB per triangle associated with
the magnetic flux �4. That value is calculated from the re-
lated magnetic structure factor at M2, B(M2) = 8

3 mtr . For the
models of Fig. 10(a) and Fig. 11(a), the calculated intensity
at M1 is ∼3.6 weaker than at M2 which is then compatible
with the measured upper limit at M1. This small magnetic
moment, deduced from the neutron data, sounds consistent
with the μSR data [35–38] about the existence of a weak
orbital moment ordering in kagome metals. For instance, only
a field of 5 Gauss is extracted in CsV3Sb5 [35] although we
have not made any precise estimate as to how to convert
the field seen at muon stopping site from our small reported
magnetic moment.
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FIG. 11. (a) LCs configuration with moments only on triangles in the 2×2 unit cell with a symmetry similar to the proposed models
[32,33] for the LCs in kagome metals. It actually corresponds to the model of Zhou and Wang [33] shown in Fig. 5 but with �1 = 0, �2 = 0
and 6�3 + 2�4=0. (b) Calculated magnetic intensity map in reciprocal space with larger intensity at M2 compared to M1. To calculate the
magnetic intensity in absolute units, the magnetic moment associated with �3 is set to 0.02 μB.

In conclusion, we searched for time-reversal symmetry
breaking in the kagome superconductor CsV3Sb5, using polar-
ized neutron diffraction. At low temperature and particularly
below the CDW temperature, we found within our experi-
mental limit no magnetic scattering at M1 = (1/2, 0, 0) point
in the first Brillouin zone although we have an indication of
a weak signal at M2 = (1/2, 1/2, 0) point. This puts a very
low limit on the expected magnetic orbital moment of less
than 0.01 μB for the most popular models [31–33] proposed
for the chiral flux state breaking time-reversal symmetry that
are discussed in Figs. 4 and 5. These results are compatible
with loop currents flowing only on the vanadium triangles.
From these data, we could determine a very weak orbital
magnetic moment of the order of mtr ∼ 0.02 ± 0.01 μB per
vanadium triangle. Improving the experiment in the future
would require a sample with a much better mosaicity and
a larger mass. The kagome metals are a nice opportunity to
show that loop currents can exist over a wider range of quan-
tum materials. Many other materials should belong to that
category, particularly low-dimensional and unconventional
superconductors.
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