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Critical quadrupole fluctuations and collective modes in iron pnictide superconductors
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The multiband nature of iron pnictides gives rise to a rich temperature-doping phase diagram of competing
orders and a plethora of collective phenomena. At low dopings, the tetragonal-to-orthorhombic structural
transition is closely followed by a spin-density-wave transition both being in close proximity to the
superconducting phase. A key question is the nature of high-Tc superconductivity and its relation to orbital
ordering and magnetism. Here we study the NaFe1−xCoxAs superconductor using polarization-resolved Raman
spectroscopy. The Raman susceptibility displays critical enhancement of nonsymmetric charge fluctuations
across the entire phase diagram, which are precursors to a d-wave Pomeranchuk instability at temperature θ (x).
The charge fluctuations are interpreted in terms of quadrupole interorbital excitations in which the electron
and hole Fermi surfaces breathe in-phase. Below Tc, the critical fluctuations acquire coherence and undergo a
metamorphosis into a coherent in-gap mode of extraordinary strength.
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I. INTRODUCTION

An important aim in the study of iron-based superconduc-
tors is to elucidate the nature of the superconducting state and
its relation to adjacent phases [1–4]. Most FeAs compounds
share a common phase diagram in which the underdoped
region is marked by a tetragonal-to-orthorhombic structural
transition at TS followed by a magnetic ordering transition
at TSDW of collinear spin stripes, which either precedes or
coincides with TS [5,6]. Upon introducing dopant atoms,
superconductivity emerges with a transition temperature Tc

of tens of degrees [1]. The driving force behind the structural
transition is widely debated, with the main proposals being
either spin [7–10] or ferro-orbital [11–19] nematic ordering.
In the spin-nematic scenario, the structural transition at TS is
driven by magnetic fluctuations that breaks fourfold rotational
(C4) lattice symmetry [9,10]. The latter induces a sharp
increase of the spin correlation length for one spin stripe
orientation and a decrease of the other. In the orbital-nematic
scenario, C4 symmetry is broken by ferro-orbital ordering
in which strong interorbital interactions lead to inequivalent
occupation of the dxz and dyz Fe orbitals.

An enhancement of spin susceptibility is observed in in-
elastic neutron scattering (INS) or nuclear magnetic resonance
(NMR) pnictide data upon approaching the spin-density-wave
(SDW) transition [20,21]. However, at higher dopings away
from the SDW phase, this enhancement is rapidly suppressed
[21–23]. Hence, while the close proximity to magnetic order
naturally favors spin fluctuations as a candidate in providing
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the glue for Cooper pairs [3], suppressed spin fluctuations
appear to be insufficient in explaining the whole temperature-
doping (T -x) phase diagram [24]. NMR measurements of the
relaxation rate 1/T1T in FeSe, which has no SDW transition,
revealed that spin fluctuations only emerge below TS , and the
nematic order was argued to be driven by orbital degrees of
freedom [25,26].

In elastic strain measurements of Co- and K-doped
BaFe2As2 and FeSe, the shear modulus C66 softens upon
cooling, and 1/C66 follows a Curie-Weiss-like behavior that
is interrupted at TS(x). Elastoresistivity measurements display
a similar behavior [27,28]. The Weiss temperature, which we
define as θ (x), is observed to increase toward zero doping
[27,29–32]. TS-θ was related to the contribution of the lattice
to the electronic nematic fluctuations in Refs. [29,30]. TS-θ
correlates with the downshift of the mean-field transition
temperature θ (x) [27]. These two temperatures being no-
ticeably different and a nonvanishing 1/C66 at TS leave
the origin of the transition θ (x) as an open question. The
1/C66 temperature dependence was attributed to the electric
quadrupole fluctuations due to the 3d interorbital fluctuations
in Refs. [31,32]. This conjecture is supported by detection
of Fe-quadrupole orbital fluctuations by electron diffraction
measurements [33]. At present, the question of whether the
θ (x) line [30,34] is associated with the structural instability or
if it is a separate instability of a different nature that breaks C4

symmetry remains unresolved.
The nematic theories and analysis of experimental data

are generally based on the assumption that C4 symmetry
is broken at TS while translational symmetry is broken at
TSDW [9,10,27,29–32]. Most pnictides have TS and TSDW

near-conjoint in the low-doping regime [35], including the
heavily studied 122-family, i.e., Co- or K-doped BaFe2As2.
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However, NaFe1−xCoxAs, which is a 111-system, has TS and
TSDW separated by more than 10 K and presents a better
suited material in which the nature of the structural and SDW
transitions can be studied separately [36–39].

Temperature-dependent x-ray powder diffraction studies of
NaFe1−xCoxAs find that at TS , the high-temperature tetrag-
onal P 4/nmm structure transforms into the orthorhombic
Cmma structure with the orthorhombic distortion δ = aO −
bO emerging smoothly upon cooling [38]. Here, aO and
bO are the lattice parameters of the orthorhombic unit cell,
aO = √

2aT + δ/2 and bO = √
2aT − δ/2 [Fig. 1(h)], and aT

of the tetragonal unit cell [Fig. 1(b)]. Neutron diffraction and
muon spin rotation data confirm that the lattice distortion starts
above TSDW(x) [6,40], and an angle-resolved photoemission
spectroscopy (ARPES) study reports Brillouin zone (BZ)
folding and doubling of the unit cell at TS(x) [41]. The
orthorhombic OP is established at TS , and development of
SDW long-range order is established at TSDW [6,42]. The
smooth continuous OP implies the occurrence of a single
structural instability that sets in at TS(x). The structural
transition appears to be subtle, with the volume of the lattice
changing only marginally [6] while both transitions display
anomalies in resistivity measurements [36,43]. Specific-heat
studies reveal anomalies at TS and TSDW that are characteristic
of second-order phase transitions [36,44,45]. The spin-nematic
scenario predicts a jump in the magnetic correlation length
at TS(x) and the formation of a pseudogap, which has been
refuted by INS measurements in which the TSDW(x) and TS(x)
transitions appear to be decoupled [42]. This may be in contrast
to that observed in the 122-systems (Ba,Ca)Fe2As2 [46,47],
implying the spin-nematic scenario is more applicable to 122-
systems than to NaFe1−xCoxAs. An alternative picture to the
spin-nematic model is one in which critical ferroquadrupoles
trigger the orthorhombic structure transition, which involves a
ferro-orbital density wave at TS(x) [13].

The proximity of the structural and superconducting phase
transitions is universal, which makes it necessary to investigate
both instabilities in one setting. So far, no clear consensus has
been reached on the symmetry of the superconducting OP.
Theories building on spin fluctuations favor unconventional s±
pairing in which the superconducting OP changes sign between
electron- and holelike FSs [3,48]. However, other theories
embrace orbital fluctuations building on superconductivity
with s++ pairing in which there is no sign change [49].
Recently, orbital antiphase s± has been proposed in which the
pairing function of the Fe dxy orbital has opposite sign to the
dxz and dyz orbitals [50], as well as orbital triplet pairing [51].
The type of doping leading to superconductivity can either
have a nodeless (s-wave) or a nodal (d-wave) OP [Fig. 1(i)].
Electron- or hole-doping BaFe2As2 with, respectively, Co or
K leads to a nodeless OP, except at high hole dopings, where a
switch to a nodal OP occurs. In contrast, isovalent substitution
with P yields a nodal OP [52].

A long-standing issue that remains unresolved in many
classes of unconventional superconductors, including cuprates
[53,54], heavy fermions [55,56], and iron pnictides, is whether
a quantum critical point (QCP) lies beneath the supercon-
ducting dome [52,57]. The quantum criticality related to the
antiferromagnetic QCP was extensively studied within the
spin fermion model [53,54,58,59]. In this model, the critical

fluctuations related to the QCP were shown to affect the
properties far into the normal state. Hence, the existence
and detection of a QCP may offer an understanding of
the origin of unconventional superconductivity and its coex-
istence with either magnetic or exotic phases. It has recently
been demonstrated in theoretical studies that Cooper pairing
is enhanced in the vicinity of a nematic QCP [60,61]. Experi-
mentally, elastic anomalies of the C66 shear modulus observed
near a QCP in Ba(Fe1−xCox)2 As2 suggest the involvement
of ferroquadrupole fluctuations [13,31,32]. A second-order
quantum phase transition lying beneath the superconducting
dome has been reported in BaFe2(As1−xPx)2 by measurements
of the London penetration depth [62]. However, a study
using NMR, x rays, and neutrons finds no signatures of a
QCP [63], raising questions as to its origin. Identification
of the charge multipolar collective excitations and their
symmetry associated with the nematic QCP is essential
for understanding superconductivity and competing phases
for which Raman spectroscopy is the most suitable probe
[64–70].

We use polarization-resolved electronic Raman spec-
troscopy to study the charge dynamics of the multiband
NaFe1−xCoxAs superconductors characterized by partially
filled 3d orbitals. We demonstrate that charge transfers
between the degenerate dxz and dyz orbitals lead to collective
intraorbital quadrupole charge fluctuations in the normal and
superconducting state. We find that the entire tetragonal
phase is governed by the emergence of strong overdamped
orbital quadrupole fluctuations that upon cooling display
critical enhancement. These critical fluctuations foretell an
approaching subleading second-order phase transition with
broken C4 symmetry and an orbitally ordered state. In the low
doping region, the formation of this phase is intervened by the
structural transition and becomes subleading. Below Tc, the
fluctuations acquire coherence and undergo a metamorphosis
into a sharp in-gap mode of extraordinary strength.

In Sec. II, we introduce the Raman experiments including
sample preparations and the Raman probe. In Sec. III, we give
an overview of the NaFe1−xCoxAs Raman data and establish
the T -x phase diagram of the static Raman susceptibility.
In Sec. IV, we compare the static Raman susceptibility to
a two-component fit of the NMR relaxation rate. In Sec. V,
we present and analyze the Raman data in more detail and
discuss them in terms of critical quadrupole fluctuations
and the Pomeranchuk instability. In Sec. VI, we discuss a
possible density-wave state below the structural transition. In
Sec. VII, we present Raman data in the superconducting state,
which entails discussions of in-gap collective modes and their
connection to critical quadrupole fluctuations in the normal
state. In Sec. VIII, we present the Bardasis-Schrieffer mode
and its interplay with the in-gap exciton mode in the particle-
hole channel. In Sec. IX, we discuss a quantum critical point
inside the superconducting dome in terms of the Pomeranchuk
instability and the interplay of the Bardasis-Schrieffer mode
with the strong in-gap collective mode. In Sec. X we present
the main conclusion of the d-wave Pomeranchuk quadrupole
fluctuations and their relation to the in-gap collective mode
of extraordinary strength. In the Appendixes, we present
the following: Appendix A contains an analysis of Raman
spectra, Appendix B discusses the coupling of Pomeranchuk

054515-2



CRITICAL QUADRUPOLE FLUCTUATIONS AND . . . PHYSICAL REVIEW B 93, 054515 (2016)

(a) (b)

(d)(c)

M

ε
δ

Γ

γ
β α

Γ

M
(e)

(f)

Fe

As

Na

c0

a0

b0

E-
E F

 [e
V

]

0.10

-0.10

0.05

-0.05

0

MΓ

x>0

EF
Γ M

x=0

Γ M
EF

dyz

dxz 

β
α

dxz dyz

kx 

ky 

(g)

Γ

M
d+

+
Γ

M
d++

+

s++

M

Γ

+

Γ

M
s+

+

a
O

b O

(i)(h)

dxy

dyz

dxz 

X

Y
xy

As (above)

     As
(below)

Fe

aT

aT

FIG. 1. NaFe1−xCoxAs crystal and electronic structure, and XY -quadrupole mode. (a) Crystal structure of NaFeAs in the tetragonal phase.
(b) Top view of the FeAs layer in the tetragonal phase shown with dxz − dyz orbitals (left) and dxy orbitals (right). Dashed lines represent
the two (four) -Fe unit cell in the tetragonal (orthorhombic) phase. (c) and (d) The effect of Co doping is illustrated on the schematic Fermi
surfaces (FSs) for NaFe1−xCoxAs in the tetragonal nonmagnetic BZ for doping x = 0 (c) and x > 0 (d). Below is shown a band-dispersion
cut along the �-M high-symmetry line. dxy , dxz, and dyz orbitals are shown with red, blue, and green, respectively. The holelike pockets α, β,
and γ surround the � point, and the electronlike pockets ε/δ surround the M point. (e) Momentum- and frequency-resolved spectra A(k,ω)
along the �-M high-symmetry line calculated by first-principles calculations including spin-orbit coupling (see Appendix D). (f) Pomeranchuk
fluctuations in B2g symmetry, which is sustained by charge transfers between degenerate dxz and dyz Fe orbitals. (See the text and Appendix E.)
(g) Monoclinic 2-Fe unit cell in the Pomeranchuk phase. (h) Quadrupole ground state in the orthorhombic phase with orthorhombic structural
distortion, doubled unit cell, and two neighboring stripes having different orbital occupation. The pluses and minuses indicate a buckling-like
modulation effect along the c axis. (i) Phase of the superconducting OPs for the γ band at the � point and the δ/ε bands at the M point for s++,
d++, s±, and d± symmetry. Different colors indicate the opposite sign of the gap function.
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fluctuations to the Raman probe, Appendix C addresses the
relaxational mode-fitting procedure, Appendix D presents
first-principles band-structure calculations, and Appendix E
discusses the symmetry modes in momentum space.

II. METHODS

A. Sample preparation

NaFe1−xCoxAs single crystals were grown by the self-flux
method as described in Ref. [71]. The volume fractions of
bulk superconductivity for compounds with a doping range
between 0.015 and 0.06, measured with a Quantum Design
SQUID magnetometer, were larger than 80%. TS , TSDW, and
Tc versus doping were reported in Ref. [39] and are shown
in the T -x phase diagram, Fig. 3(a). The superconducting
gap values 2
 determined by ARPES in Refs. [72,73] are
indicated by vertical dashed lines in Fig. 9. Figure 10(a) shows
2
 determined by Raman measurements. The samples were
vetted for the highest quality surfaces and were handled in a
protective argon atmosphere in a glovebox, where they were
packed into sealed glass containers with a protective argon
atmosphere. Upon preparing to do the Raman measurements,
the sample was unpacked inside a nitrogen-filled protective
glovebag sealed to the entrance of the cryostat. The crystal
was then cleaved and positioned in the continuous-flow optical
cryostat.

B. Experimental methods

All Raman scattering measurements were performed in
a quasibackscattering geometry along the crystal c axis and
excited with a Kr+ laser line. We used a laser excitation
energy of ωL = 2.6 eV, except for investigations of the in-gap
collective modes shown in Figs. 11 and 12(a), where ωL =
1.93 eV was also used. The incident laser power was less than
12 mW focused to a 50 × 100 μm2 spot on the ab surface. In
the superconducting state, the power was reduced to less than
2 mW. For ωL = 2.6 eV, being close to resonant condition, the
lowest temperature was �5 K. The lower excitation energy
of ωL = 1.93 eV being preresonant and at �3 K allowed
us to observe both the ω

p-p
B2g

as well as the ω
p-h
B2g

excitons at
finite frequencies. The spectra of the collected scattered light
were measured by a triple-stage Raman spectrometer designed
for high-straylight rejection and throughput equipped with a
liquid-nitrogen-cooled charge-coupled detector.

The Raman spectra were corrected for the spectral response
of the spectrometer and detector in obtaining the Raman
scattering intensity, IeI eS (ω) = (1 + n)χ ′′(ω) + L(ω). Here,
L(ω) is a small luminescence background, and eI and eS

are the polarization vectors for the incident and scattered
photons for a given scattering geometry with respect to the
unit cell [Fig. 1(b)]. The recorded Raman intensity was
background-subtracted with a near-linear line and a constant
determined for each polarization geometry (see Appendix A).

In obtaining the static Raman susceptibility χXY
0 (T ,x) in

the B2g symmetry channel shown in Fig. 3, we performed
a K-K transformation of the χ ′′

XY (ω,T ,x) data shown in
Figs. 7(d)–7(f) and 8(a)–8(e). For a given doping x, the χ ′′

XY (ω)
spectra for each temperature were first divided by ω to obtain
χ ′′

XY (ω)/ω. The lower-frequency cutoff is �20 cm−1, and

χ ′′
XY (ω)/ω was therefore extended to zero frequency with a

phenomenological even function that fits well to the data.
The static Raman susceptibility was then calculated from the
Kramers-Kronig relation,

χ ′
XY (0) = χXY

0 = 2

π
P

∫ ∞

0

χ ′′
XY (ω)

ω
dω (1)

at zero frequency. The integration was performed up to
the highest measured frequency �750 cm−1 at which point
χ ′′

XY (ω)/ω was near zero.

C. The Raman probe

The Raman response function is sensitive to charge-density
fluctuations driven by the incident and scattered photon fields.
For a given scattering geometry with polarization vectors eI

and eS for the incident and scattered photons, the Raman
susceptibility is given by

χI,S(ω) ∝ −i

∫ ∞

0
eiωt 〈[ρ̃I,S(t),ρ̃I,S(0)]〉dt. (2)

The symmetrized Raman tensor χI,S(ω) for the different
scattering geometries can be classified by the irreducible
representations for the crystallographic point group [74]. The
symmetry channels accessible by Raman scattering transform
A1g , A2g , B1g , B2g , and Eg irreducible representation of
a D4h point group (above TS) and as Ag , B1g , B2g , and
B3g for D2h (below TS). Below TS , A1g and B2g become
Ag . Using circularly polarized light, we confirmed that the
contribution from the A2g symmetry channel can be neglected.
The scattering geometry is referenced to the X-Y coordinate
system of the crystallographic (As-As) unit cell depicted in
Fig. 1(b). The incident and scattered photon fields cross-
polarized along the a and b directions of the two-Fe unit
cell yield χXY (ω) susceptibility. For NaFe1−xCoxAs with D4h

point-group symmetry in the tetragonal phase, χXY (ω) probes
excitations in B2g symmetry. The cross-polarized photon fields
rotated by 45◦ yield χxy(ω) or B1g susceptibility. χA1g

(ω) can
be obtained in two steps: first, by aligning both photon fields
along one axis, and then by obtaining the xy susceptibility.
χA1g

(ω) is given by χXX(ω) − χxy(ω). The space group in the
tetragonal and orthorhombic phase is, respectively, P 4/nmm

with point group D4h and Cmma with point group D2h [6].
Entering the orthorhombic phase from the tetragonal phase is
associated with broken symmetry operators, which includes
C4 rotations and mirror planes of the tetragonal phase with
D4h point-group symmetry. The point-group symmetry for
the orthorhombic phase is D2h, in which both B2g and A1g

symmetry of the tetragonal phase conforms to Ag symmetry.

III. OVERVIEW OF NaFe1−xCoxAs RAMAN DATA

The temperature- or doping-dependent electronic Raman
susceptibility χ ′′(ω,T ,x) reveals the dynamics of collective
excitations and provides an unambiguous identification of
their symmetry [64–67]. The symmetrized Raman tensor for
the different scattering geometries can be classified by the
irreducible representations for the crystallographic point group
[74]. The symmetry channels accessible by Raman scattering
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FIG. 2. Raman susceptibility χ ′′(ω) in the A1g , B2g , and B1g symmetry channels at representative temperature and dopings. (a)–(c) χ ′′
A1g

(ω)

showing superconducting features highlighted with blue shading below �200 cm−1 (x = 0.0175, x = 0.05). (d)–(f) χ ′′
B2g

(ω) presenting a
quasielastic scattering relaxational mode above TS(x) and Tc(x) highlighted with green shading, a density wave suppression, and coherence
peak highlighted with light blue shading below TS(x) (x = 0, 5 K), and a low-temperature collective resonance highlighted with blue shading
(x = 0.0175, x = 0.05, 5 K). (g)–(i) χ ′′

B1g
(ω) featuring mainly a B1g phonon.

are A1g , A2g , B1g , B2g , and Eg for pnictides with a tetragonal
2-Fe unit cell, i.e., for NaFe1−xCoxAs (above TS).

In Fig. 2 we show Raman susceptibility χ ′′(ω) at repre-
sentative temperatures and dopings for the A1g , B2g , and B1g

symmetry channels to point out important features in relation
to the tetragonal, orthorhombic, SDW, and superconducting
phases of the T -x phase diagram [Fig. 3(a)], which will be
discussed in depth below. Most of these features are reflected
in the χ ′′

B2g
(ω) response, while χ ′′

A1g
(ω) contains important

characteristics of a superconducting nature, and χ ′′
B1g

(ω)
mainly features a B1g phonon. The detailed temperature and
doping dependence is shown in Figs. 7–11.

Using Kramers-Kronig (K-K) transformation, we calculate
the real part of χXY (ω,T ,x) at ω = 0, the static Raman
susceptibility χXY

0 (T ,x), for B2g symmetry. Figure 3(a) shows
χXY

0 (T ,x) in a T -x phase diagram where TS(x), TSDW(x),
and Tc(x) obtained by transport measurements [39] are

superimposed on top. The enhancement of χXY
0 (T ,x) with

cooling, observed for all x, starts from high temperatures and
culminates in a maximum at the structural transition TS(x) or
at a smaller maximum before the Tc(x) line for higher dopings.
χXY

0 (T ,x) is suppressed below the structural transition TS(x)
[75]. Figure 3(b) shows χXY

0 (T ,x) with a universal fit to
A/[T − θ (x)] where the temperature axis for each doping x

is shifted by θ (x). The inset shows the inverse of χXY
0 (T ,x)

versus temperature T -θ (x) with a fit to a universal straight line.
The two sharp modes in χ ′′

A1g
(ω) at �164 and �195 cm−1,

and in χ ′′
B1g

(ω) at �211 cm−1 observed in the spectra for all
dopings and temperatures, are phonon excitations [Figs. 2(g)–
2(i)], as they are expected for the 111-family crystallographic
structure [76,77]. The frequencies of these phonons increase
slightly with cooling, typical of anharmonic behavior, and they
do not display any anomalies in self-energy upon crossing
phase-transition lines.
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(a) (b)

SC1

SC2

xC

FIG. 3. Static Raman susceptibility χXY
0 (T ,x) in the B2g symmetry channel. (a) Evolution of χXY

0 (T ,x) = 2/π
∫ ∞

0 [χ ′′
XY (ω)/ω]dω as a

function of temperature and doping. The structural transition TS(x), the magnetic transition TSDW(x), and the superconducting transition
temperature Tc(x) (from Ref. [39]) are indicated by blue triangles, purple squares, and red circles, respectively. θ (x) is the mean-field transition
temperature associated with the critical behavior of χXY

0 (T ,x). (b) χXY
0 (T ,x) is shown with a universal fit to A/[T − θ (x)], where the temperature

axis for each doping x is shifted by θ (x). The inset shows the inverse of χXY
0 (T ,x) vs temperature T − θ (x) with a fit to a universal straight

line.

For low dopings, the χ ′′
A1g

(ω) susceptibility displays an
overall enhancement of the spectra upon traversing the
high-temperature tetragonal phase to the orthorhombic and
SDW phases that maximizes at lower temperatures. For x �
0.0175, the most important changes occur in the low-frequency
region below �200 cm−1 when crossing from the normal into
the superconducting state. Here χ ′′

A1g
(ω) displays markedly

different dynamics above and below Tc(x), with featureless
spectra above Tc(x) and below, one or more superconducting
features in the range of �70 cm−1.

The B2g symmetry channel, χ ′′
XY (ω), contains several

characteristics: (i) a broad peak extending to about 400 cm−1,
indicated by green shading, which is dominating in the entire
tetragonal phase above the TS(x) and Tc(x) lines; (ii) a low-
frequency suppression and coherence peak in the orthorhombic
phase, indicated by light blue shading; (iii) a sharp resonance
of extraordinary strength in the superconducting phase at
	57 cm−1 (7.1 meV), indicated by blue shading; and (iv)
a broad continuum that diminishes with doping [Fig. 5(a)].

IV. STATIC RAMAN SUSCEPTIBILITY AND
NMR 1/T1T RELAXATION RATE

Figure 4 displays the temperature dependence of the NMR
relaxation rate 1/75T1T for As compared to the static Raman
susceptibility χ ′

XY (0,T ). The NMR data for dopings x =
0, 0.025, and 0.06 are from Refs. [20,78,79], respectively.
The As nucleus has spin 3/2 and can relax into both an
electronic spin or a charge quadrupole excitation [80]. The
latter is described by nuclear quadrupole resonance (NQR).
1/75T1T is decomposed into two contributions, 1/T1T =
(1/T1T )intra + (1/T1T )inter, where (1/T1T )intra = C/(T − θ )
and (1/T1T )inter = α̃ + β̃ exp(−
̃/kBT ) [81]. In this model,

the former is the Curie-Weiss law due to intraband relaxation
and the latter is due to interband-like excitations in which the
gap 
̃ = 240 cm−1 is used. χ ′

XY (0,T ) scales to (1/T1T )intra

for all three dopings x = 0, 0.025, and 0.06, and we attribute
θ to correspond to the Pomeranchuk transition temperature
at θ (x). The used value for 
̃ corresponds to the minor
mode at 240 cm−1, which is present in χ ′′

XY (ω,T ) for all
dopings and temperatures above TS(x). The self-consistency
of the presented analysis of 1/75T1T and its correspondence to
χ ′

XY (0,T ) suggests that 1/75T1T for NaFe1−xCoxAs originates
from quadrupole excitations and not spin relaxation. These
orbital singlet excitations have 
L = 2 and can be detected
by Raman spectroscopy and NQR but not INS experiments.
The same scaling analysis, including elastic probes, applied to
the 122-family (Sr,Eu)Fe2As2 in Ref. [82] implies that this role
of quadrupoles may be a general feature of pnictide materials.

V. CRITICAL QUADRUPOLE FLUCTUATIONS

In the tetragonal phase above TS(x), χ ′′
XY (ω,T ,x) reveals

the emergence of broad quasielastic scattering (QES) peaked at
ωP (T ,x) (Figs. 7, 8, and 5). The intensity of this feature is weak
at high temperatures. Upon cooling, it softens and gains in in-
tensity, where it reaches a maximum at the TS(x) line and near
Tc(x). Below TS(x), the static susceptibility drops rapidly with-
out any observable inflection point at TSDW(x), which is con-
gruent with a smoothly developing orthorhombic OP demon-
strated in x-ray and neutron diffraction studies [6,38,42].

We apply a universal fit to χ ′′
XY (ω,T ,x) with a simultaneous

fit of our data as a function of frequency, temperature, and
doping (see Appendix C, Fig. 14). Above the TS(x) and
Tc(x) lines, χ ′′

XY (ω,T ,x) can be decomposed into three
components [Fig. 5(a)], which include a broad QES
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FIG. 4. Two-component fit of the NMR relaxation rate 1/75T1T for As in NaFe1−xCoxAs compared to the static Raman susceptibility
χ ′

XY (0,T ). Temperature dependence of the NMR relaxation rate 1/75T1T for As (black triangles) compared to the static Raman susceptibility
χ ′

XY (0,T ) (red circles). 1/75T1T is decomposed into two contributions, 1/T1T = (1/T1T )intra + (1/T1T )inter, where (1/T1T )intra = C/(T -θ )
(yellow shades) and (1/T1T )inter = α̃ + β̃ exp(−
̃/kBT ) (blue squares). χ ′

XY (0,T ) scales to (1/T1T )intra for all three dopings x = 0, 0.025,
and 0.06, and we attribute θ to correspond to the Pomeranchuk transition temperature θ described in the main text, and where the red line is
the Curie-Weiss fit. For the fits of 1/T1T , we have used 
̃/kB = 350 or 
̃ = 240 cm−1. This value of 
 corresponds to the minor mode that
is present in χ ′′

XY (ω,T ) for all dopings and temperatures above TS(x). (a) NMR data for x = 0 are from Ref. [20]. (b) NMR data for x = 0.025
are from Ref. [78]. (c) NMR data for x = 0.06 are from Ref. [79].

peak that can be described as a relaxational mode (RM),
χRM

XY (ω,T ,x) ∝ A(x)[ωP (T ,x) − iω]−1, a continuum, and a
minor peak at �240 cm−1. Description of the RM is based on
a phenomenological model, Eqs. (C1)–(C3) (see Appendix
C). The intensity of both the continuum and of the �240 cm−1

mode diminishes rapidly with doping, and vanishes near x 	
0.025 [Figs. 5(c) and 5(d)]. Importantly, the orbital content
of the larger γ FS is mainly composed of dxy orbitals, while
the α and β FSs primarily have dxz and dyz orbital character
[Fig. 1(c)] [83]. At the M point, the inner (outer) part of the
δ/ε FS has dxz and dyz (dxy) orbital character. The continuum
and the �240 cm−1 mode likely involve the β band as its FS
reduces with doping [see Figs. 1(b) and 1(d)], with the former
due to intraband excitations and the latter due to an interband-
like excitation with a 240 cm−1 gap consistent with quadrupole

excitations as verified by scaling of χXY
0 (T ,x) to NQR data

(see Sec. IV). This finding is consistent with first-principles
calculations taking into account spin-orbit coupling [Fig. 1(e)].

Figure 5(c) displays the intensity dependence of the RM
with doping, which is seen to persist for all dopings. Figure 5(e)
shows the doping dependence of θ (x), which is observed
to decrease close to linear for increasing dopings becoming
negative near x = 0.022. This behavior is consistent with that
obtained from the analysis of the static Raman susceptibility
χXY

0 (T ,x) shown in the T -x phase diagram [Fig. 3(a)].
The intensity of the RM decreases with doping [Fig. 5(c)].

The frequency decreases linearly upon cooling below �100 K
for all dopings with the extension crossing the temperature axis
at θ (x) [see the insets to Figs. 7(d)–7(f) and 8]. The decrease of
θ (x) with doping can be described by a function θ (x) = b1 −
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(d) (e)

(a) (b) (c)

FIG. 5. Decomposition of the Raman susceptibility χ ′′
XY (ω,T ,x) in the B2g symmetry channel. (a) χ ′′

XY (ω,T ,x) (black dots) for the
representative doping x = 0.0165 and temperature 55 K in the tetragonal phase. The red line is a fit to the data, which are decomposed into
three components: a continuum background (blue shading), a Lorentz oscillator (magenta shading), and a relaxational mode (green shading),
A(x)ωP (T ,x)[ωP (T ,x) − iω]−1. Parts (b)–(d) show the doping dependence of the intensity of the continuum (b), the relaxational mode (c),
and the oscillator (d) above TS(x) and Tc. The dashed red line near x 	 0.025 indicates the doping at which the intensity in (b) and (d) becomes
negligible. (e) Doping dependence of the mean-field transition temperature θ (x).

a1x crossing zero at x = xc 	 0.02 and becoming negative
for x � 0.02 [Fig. 5(e)]. In the T -x phase diagram, Fig. 3(a),
the θ (x) line is parallel to the TSDW(x) and TS(x) lines [84],
approximately 10 and 20 K below, respectively, for x � 0.02.

The critical behavior of the susceptibility χXY (ω,T ,x) man-
ifests in (i) the enhancement of the static Raman susceptibility
χXY

0 (T ,x), which scales to the universal response function
[T − θ (x)]−1 upon cooling for all doping concentrations x

with a linear temperature dependence of θ (x), and (ii) the gain
in intensity and near-linear slowdown of the characteristic
fluctuation frequency ωP (T ,x) ∝ T − θ (x). The inverse of
χXY

0 (T ,x), shown in the inset to Fig. 3(b), exhibits the same
linear behavior with temperature as ωP (T ,x) of the RM until
TS(x) or Tc(x), below which χXY

0 (T ,x) rapidly falls off.
Next we reflect on the emergent critical enhancement of

χXY (ω,T ,x) as a result of strong electronic interactions. Po-
tential reasons for the critical behavior include the following:
(i) electronic coupling to lattice degrees of freedom, (ii)
magnetic fluctuations [85–87], which may invoke the Ising
spin-nematic scenario, and (iii) charge fluctuations leading to
charge order. Here we consider the latter in terms of quadrupole
Pomeranchuk fluctuations as the most likely candidate. The
partially filled Fe orbitals with a 3d6 configuration give
rise to interorbital quadrupole charge fluctuations [31–33].
The critical charge fluctuations in real space are manifested
in electron-hole excitations between degenerate dxz and dyz

orbitals on Fe sites, which lead to charge transfers as illustrated
in Fig. 1(f). This induces a dynamic quadrupole moment of B2g

symmetry with nodes along the X-Y directions [Fig. 1(b)].
These are orbital singlet excitations (
L = 2). In momentum

space, the fluctuations lead to dynamic distortions of the
FSs around the � and M point [Fig. 1(f)], resulting in
fluctuating quadrupole moments with nodes along �X and
�Y [Fig. 6(a)]. In-phase synchronization of the two FSs leads
to d± quadrupole deformations that are favored over d++ for
a dominant repulsive interaction between the � and M points
(see Appendix E for further details).

These critical quadrupole fluctuations drive the system
toward a Pomeranchuk-like instability extended to multibands
[88–93]. In a Fermi liquid, the Pomeranchuk instability di-
rectly leads to a nematic transition via spontaneous quadrupole
deformation of the FSs that freeze with static distortions, and
in real space the 2-Fe unit cell becomes monoclinic [Fig. 1(g)].
The critical behavior of the B2g Raman response foretells the
approaching second-order Pomeranchuk phase transition at
θ (x), which breaks rotational invariance while translational
symmetry is preserved. It occurs when the attraction in
the d-wave channel exceeds a critical threshold [88]. The
Pomeranchuk instability in iron pnictides is special in that
it breaks the discrete C4 symmetry via orbital ordering, i.e., a
quadrupole lattice in an ordered orbital pattern [see Fig. 1(g)]
[12] but without instigating a density-wave (DW) instability.
Similar to Fermi liquids, it requires an attraction in the
d-wave (B2g) channel, i.e., an interaction term of the form
g0(nxz − nyz)2 with g0 < 0 favoring an occupation difference
nxz − nyz of the dxz and dyz orbitals. The low-energy anomalies
in the B2g Raman data reflect the critical fluctuations associated
with the Pomeranchuk instability. The extraordinarily large
temperature and frequency range of these fluctuations is
consistent with the presence of a QCP defined by a vanishing
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FIG. 6. Illustration of symmetry modes in momentum space. (a) Neutral quadrupole charge-density modulation with d± symmetry in the
B2g-symmetry channel. In momentum space, the mode is illustrated by positive and negative regions of the BZ. The mode is sustained by
dxz − dyz intraband and interband transitions at the � and M point, respectively. The coupled interband electron-hole excitations between
participating bands at the � and M point help to stabilize the d± mode. (b) s± breathing mode in A1g symmetry.

Weiss temperature θ (x). The scaling of χXY
0 (T ,x) in a two-

component fit to NQR data provides compelling evidence of
quadrupole-relaxation (see Sec. IV) [80]. The range of the
critical fluctuations in the XY -symmetry channel extends over
a much wider temperature range [Figs. 3(a) and 3(b)] than the
SDW fluctuations limited to a narrow temperature range above
TSDW(x) [36,42,44,45].

In conclusion, we find that Fe-orbital quadrupole fluctu-
ations display critical behavior foretelling an approaching
new ground state below the θ -line Pomeranchuk instability.
These results appear to be consistent with other pnictide
materials, including the 122 and FeSe families, suggesting this
conclusion may be more universal. In addition, the observation
of a similar Weiss-temperature θ (x)-like line in the T -x phase

diagram of both Na-111 and Ba-122 systems by Raman [94,95]
suggests that the θ -line is a universal feature of pnictides.
A θ -line is likewise seen in elastic strain measurements
[27,29–32]. In NMR studies of FeSe, no Curie-Weiss behavior
was observed in the relaxation rate 1/T1T above TS [25,26].
In FeSe, NMR is only sensitive to spins since the 77Se nucleus
has spin 1/2 and does not couple to quadrupoles. However, in
the 122-family compounds mentioned above, which do display
Curie-Weiss behavior, the 77As nucleus has spin 3/2 and does
relax into quadrupolar excitations. This observation implies
that the Curie-Weiss behavior originates from quadrupoles.
The fact that Curie-Weiss behavior is indeed observed in FeSe
when using a C66 probe [25] further underlines this conclusion.
In Raman studies of Co-doped Ba-122 [85,94] (as well as
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(e)

(b) (c)(a)

(d) (f)

FIG. 7. Raman susceptibility χ ′′
XY (ω,T ) in the B2g symmetry channel at dopings 0 � x � 0.0175. (a)–(c) Temperature and frequency

evolution of Log[χ ′′
XY (ω,T )] at dopings x = 0, 0.015, and 0.0175. The structural transition TS(x) is indicated on the temperature axis, and the

coherence peak, 2
DW, on the frequency axis for x = 0 and 0.015. (d)–(f) χ ′′
XY (ω) for T � 100 K displaced vertically for clarity. All dopings

show the development of the relaxational mode (RM) in the tetragonal phase described by A(x)ωP (T ,x)[ωP (T ,x) − iω]−1; x = 0 and 0.015
show the development of the coherence peak and spectral weight suppression in the orthorhombic phase; x = 0.0175 shows the emergence of
the sharp resonance in the superconducting phase. The insets display ωP (T ,x) vs temperature.

AFe2As2, A = Eu,Er [82]), fluctuations were detected over a
range from TS (�138 K for x = 0) to room temperature.

VI. DENSITY-WAVE STATE

In the orthorhombic phase, χ ′′
XY (ω,T ,x) is characterized by

a low-frequency suppression of spectral weight and a peak

at 2
DW, which develops upon cooling observed for x = 0
and 0.015 crystals [Figs. 7(a), 7(b), 7(d), and 7(e)]. The peak
is at about �300 cm−1 at low temperatures for x = 0. This
is near the �33 meV gap value reported by STM studies
[96]. The evolution of the Raman response as a function
of frequency and temperature in the low-doping regime is
captured in the color contour plots shown in Figs. 7(a) and 7(b).
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(a) (b) (c) (d) (e)

FIG. 8. Raman susceptibility χ ′′
XY (ω,T ) in the B2g-symmetry channel at dopings 0.02 � x � 0.08. (a)–(e) χ ′′

XY (ω,T ) at various temperatures
displaced vertically for clarity. All dopings show the development of the relaxational mode (RM) in the tetragonal phase described by
A(x)ωP (T ,x)[ωP (T ,x) − iω]−1 and the emergence of the sharp resonance in the superconducting phase.

Whether 2
DW starts to develop at TS(x) or at TSDW(x) upon
cooling is obscured by the quasielastic peak (QEP), which
rapidly decreases below TS(x), at which point the quadrupole
fluctuations freeze due to the broken C4 symmetry. The energy
of 2
DW decreases with doping, and for x � 0.0175 this
low-frequency suppression and peak are absent.

The 2
DW feature could potentially originate from an
SDW gap similar to what has been reported for 122-systems
[82,97–100]. Here, signatures of the gap develop below
TSDW(x), which in the 122-family are near-conjoint with
TS(x). In NaFe1−xCoxAs, TS(x) and TSDW(x) are separated
by more than 10 K. If the 2
DW suppression develops below
TS(x), C4 and translational symmetry are broken together
and the instability at TS(x) is Kugel-Khomskii-type or due
to quantum-mechanical interactions between orbital and spin
degrees of freedom, as described by Kugel and Khomskii
[101]. If the density-wave order develops below TSDW(x),
translational symmetry is first broken at TSDW(x).

VII. IN-GAP COLLECTIVE MODES IN THE
SUPERCONDUCTING STATE

In the superconducting state, for x � 0.0175, the low-
frequency peak and suppression are absent and χ ′′

XY (ω,T ,x)
contains features in both A1g and B2g symmetry. Below Tc(x),
a resonance emerges in B2g symmetry that sharpens, gains
in strength, and hardens to ω

p-h
B2g

	 7.1 meV upon cooling for

x � xc [Figs. 7(f), 8, and 9]. ωp-h
B2g

is the strongest at the lowest
temperatures and near xc at x = 0.0175, and then it decreases
in strength for increasing doping that still prevails for x = 0.05
and vanishes for x = 0.08. The doping dependence of the
superconducting features at 5 K in both χ ′′

A1g
(ω) (top row) and

χ ′′
XY (ω) (bottom row) in comparison to normal state spectra at

23 K is summarized in Fig. 9. In the top panel, ωp-h
A1g

	 68 cm−1

(8.5 meV), 2
γ and 2
εδ are present from x = 0.0175 to
0.05, and they are nearly independent of doping [Fig. 10(a)].
2
γ and 2
εδ are consistent with ARPES [72,73] and are
assigned as pair-breaking excitations across the corresponding
superconducting gaps (Fig. 9). The width of ω

p-h
B2g

is less than
1 meV for x � 0.0225 [Fig. 10(b)], after which it broadens
and its intensity diminishes gradually until it vanishes before
x = 0.08. ω

p-h
A1g

and ω
p-h
B2g

qualify as true in-gap excitations as
their energy lies below the minimal quasiparticle gap, 2
γ

(Fig. 9). In contrast to the superconducting gap feature at
the 2
 threshold, which is characterized by a square-root
divergence [64], the in-gap collective modes appear as sharp
δ-function-like resonances.

Next we interpret the spectrum of collective modes as
they may present pertinent information of the superconducting
state [64,65,102–107]. Early studies focused on the Bardasis-
Schrieffer mode in BCS single-band s-wave superconductors
where attraction in a non-s-wave particle-particle (p-p)
channel would result in the Bardasis-Schrieffer mode forming

054515-11



V. K. THORSMØLLE et al. PHYSICAL REVIEW B 93, 054515 (2016)

FIG. 9. Raman susceptibilities χ ′′
XX(ω) − χ ′′

xy(ω) and χ ′′
XY (ω) in the superconducting state. (a) χ ′′

XX(ω) − χ ′′
xy(ω) (top row) and χ ′′

XY (ω)
(bottom row) in the superconducting (5 K) and normal (23 K) states at doping levels as indicated. The vertical dashed line, shown for
x = 0.0175 and 0.05, indicates the lowest superconducting gap determined by ARPES at �9 meV [72] and �10 meV [73], respectively.

below the 2
 gap edge [108]. In multiband superconductors
with weak interband interactions, which applies to MgB2, the
Leggett mode results from coherent Cooper pair interband
tunneling [65,109,110]. In multiband superconductors with
strong interband interactions, which applies to pnictides
including NaFe1−xCoxAs, the Leggett mode is pushed above
the 2
 gap edge, where it becomes overdamped and is
therefore undetectable.

Recently, Chubukov et al. predicted a new in-gap exciton in
pnictides to appear in A1g symmetry below 2
 consistent with
a condensate with s± symmetry [65,103]. Rather than Cooper
pairs, this mode is composed of particle-hole (p-h) pairs
forming a bound exciton in A1g symmetry. A Raman study

of collective modes in multiband superconductors predicted
a new p-h mode in B2g symmetry below 2
, and it also
discusses the Bardasis-Schrieffer mode [105].

A. Particle-hole exciton modes

We assign ω
p-h
A1g

to the p-h charge exciton predicted by
Chubukov et al. [66,103]. This p-h mode in A1g symmetry
is represented by in-phase breathing between the electron and
hole FSs [Fig. 12(b) and Appendix E, and Fig. 6(b)]. This
breathing mode entails periodic charge transfer between the
particle and hole pockets. The out-of-phase breathing of the
particle and hole pockets turns the repulsion into an effective

(a) (b)

FIG. 10. Doping dependence of superconducting gaps, in-gap collective modes, and their width. (a) Doping dependence of the
superconducting gaps and in-gap collective modes from Fig. 9. (b) Normalized ωB2g

at various dopings from Fig. 9.
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FIG. 11. Raman susceptibility χ ′′
XY (ω) in the superconducting state. χ ′′

XY (ω) in the B2g-symmetry channel in the superconducting (3 K) and
normal (23 K) state for a laser excitation of 647 nm (1.91 eV) at doping levels as indicated.

attraction [103]. The sign flip of the effective interaction is
similar to the effective attraction in the Cooper channel for
the opposite sign of the OP for the particle and hole pockets.
Hence, both ω

p-h
A1g

and s± depend on the interpocket interaction

winning over intrapocket repulsion [65,103]. ω
p-h
A1g

signifies

attraction in the s-wave channel in much the same way as ω
p-h
B2g

does in the d-wave channel. If strong enough, such attraction
may lead to the Pomeranchuk instability in the A1g channel.

The significant intensity of ω
p-h
B2g

suggests that it couples
to light directly, implying that it is the d-wave counterpart
of the ω

p-h
A1g

exciton [105]. Because χXY (ω,T ,x) is controlled

by a large coupling constant g, the ω
p-h
B2g

resonance, which
is facilitated by a positive feedback of the superconductivity,
emerges from the normal state RM upon cooling through Tc

while retaining its identity as a bound state of d± p-h oscilla-
tions. Hence at higher dopings, where the structural transition
is suppressed, these d-wave Pomeranchuk fluctuations grow
strong, Below Tc, where low-lying excitations are removed, the
RM gains coherence, and ω

p-h
B2g

appears as a sharp resonance.
The immediate consequence of attraction in the B2g

channel is the in-gap resonant modes below the quasiparticle
continuum in the superconducting state. Hence the attraction
in the XY channel leads to a sharp resonance below the
p-h continuum [111]. We note that the attraction causing the
resonance is operational in the p-h channel, while it is well
known that the p-h and Cooper channels do not have a separate
existence and are combined into a single in-gap mode [102].
It was shown that if the superconducting OP changes sign on
different sheets of the FS, the two channels disentangle [105].
This explains the presence of two peaks rather than one in the
underdoped regime.

B. Bardasis-Schrieffer collective mode

For dopings x � 0.0175 and temperatures �3 K, a new
weak mode appears at ω

p-p
B2g

=	 25 cm−1 (3.1 meV), which

becomes stronger for decreasing doping while ω
p-h
B2g

weakens

considerably [Figs. 11 and 12(a)]. ω
p-p
B2g

, which we attribute
to a Bardasis-Schrieffer mode, exists only in a narrow doping
window to the right for both the TS(x) and TSDW(x) lines
[36–39,112]. The maximum χXY

0 (T ,x) in Fig. 3(a) tracks
the known part of the TS(x) line, and at higher dopings it
is then observed to curve slightly in toward lower dopings
for decreasing temperatures but below θ (x) in a region we
will name SC2 [see Figs. 3(a), 11, and 12(a)]. In contrast
to the detrimental effect of the DW state with the DW
gap depleting the density of states, superconductivity below
θ (x) is not obstructed by the Pomeranchuk instability. Thus,
superconductivity in the orthorhombic phase appears in the
narrow doping window below θ (x) (region SC2).

The Bardasis-Schrieffer mode is excited indirectly by
photons as the transformation of a p-h into a Cooper pair
requires the assistance of the condensate [102,105,113]. For
g > 0, pairing in the d-wave channel provides the conditions
for the Bardasis-Schrieffer mode to exist. Figure 12(a) shows
an energy diagram of the superconducting state including
the superconducting gap 2
 and the in-gap collective modes
ω

p-h
A1g

, ω
p-h
B2g

, and ω
p-p
B2g

shown together with their spectroscopic
signatures in the Raman data.

VIII. QUANTUM CRITICAL POINT INSIDE
THE SUPERCONDUCTING DOME

Beneath the superconducting dome but above θ (x), which
we will name SC1, the susceptibility diverges upon approach-
ing θ (x) and the ω

p-h
B2g

exciton acquires extraordinary strength.
However, in region SC2, below θ (x), the Pomeranchuk
fluctuations are gapped and the ω

p-h
B2g

exciton susceptibility
is rapidly suppressed. Upon decreasing the distance to θ (x),
i.e., at lower dopings away from xc, the Bardasis-Schrieffer
mode gets sharper by borrowing spectral weight from the ω

p-h
B2g

exciton [Figs. 11 and 12(a)]. The interaction between ω
p-h
B2g

and

ω
p-p
B2g

versus doping is similar to that discussed for FeSe in
Ref. [105].
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FIG. 12. Energy diagram of the superconducting state. (a) Energy diagram of the superconducting state including the superconducting
gap 2
 and the in-gap collective modes ω

p-h
A1g

, ω
p-h
B2g

, and ω
p-p
B2g

shown together with their spectroscopic signatures in the Raman data. The red
horizontal dashed line indicating the lowest superconducting gap coincides with that determined by ARPES at �9 meV for x = 0.0175 [72].
The A1g spectrum for x = 0.0175 (green) was obtained at 5 K with an excitation energy of ωL = 2.6 eV, and the B2g spectra for x = 0.0165
(orange) and x = 0.0175 (purple) were obtained at 3 K and ωL = 1.91 eV. The modes determined from a two-band-model calculation (not
included) are shown together with the A1g and B2g spectra for illustration, and they have the area fully colored below the modes of ω

p-h
A1g

(green),

ω
p-h
B2g

(dark blue), and ω
p-p
B2g

(light blue). (b) Illustration of the symmetry of the BZ for the ω
p-h
A1g

and ω
p-h
B2g

modes in the p-h channel having,
respectively, s± and d± symmetry (see Appendix E).

The existence of the two superconducting regions SC1 and
SC2 that feature the doping-dependent ω

p-h
B2g

and ω
p-p
B2g

exciton
modes (Fig. 11), separated by T = θ (x), defines a QCP at
xc lying beneath the superconducting dome [Fig. 3(a)]. The
location of the boundary between SC1 and SC2 is affected
by the competition between the nematic and superconducting
orders for carriers [9,54,114]. Below the Pomeranchuk insta-
bility at θ (x), the Pomeranchuk fluctuations vanish and SC2 is
characterized by a rhombohedral primitive unit cell, broken C4

symmetry, and a quadrupole lattice ordered in an orbital pattern
[Fig. 1(g)]. In SC1, the critical fluctuations become quantum in
nature, and upon decreasing the nonthermal control parameter
x from the overdoped regime, ω

p-h
B2g

gains in strength upon
approaching xc. When crossing into SC2, the intensity of the
ω

p-h
B2g

resonance collapses and ω
p-p
B2g

appears indicative of a QCP
occurring at xc. Hence, with doping as a control parameter,
we probe spectral weight transfer from the strong p-h B2g

exciton to the emerging Bardasis-Schrieffer mode and find
signatures of a QCP lying beneath the superconducting dome
[105].

The QCP is associated with non-Fermi-liquid behavior,
and its occurrence at the Pomeranchuk instability becoming
quantum at θ (x = xc) ≡ 0 suggests it is driven by quadrupole
Pomeranchuk fluctuations. The same scenario may prevail in
BaFe2(As1−xPx)2, where a QCP is clearly present below the
superconducting dome [62], but where a study using NMR,
x rays, and neutrons finds no signatures of a QCP [63].
This suggests that the criticality or the QCP arises from the
quadrupole Pomeranchuk QCP.

We find that the criticality or the QCP does not arise from
either the structural or SDW transitions in support of the
quadrupole Pomeranchuk QCP presented in the main text. This
conclusion is supported by recent theoretical studies of super-
conductivity driven by nematic fluctuations at or near a nematic
QCP, which find the following: pairing in the s-wave channel is
boosted by d-wave symmetry fluctuations [61], and near a QCP
and Pomeranchuk transitions, superconductivity is strongly
enhanced [115]. This study concludes that superconductivity is
determined by a delicate interplay between the two competing
effects, namely the pairing tendencies of OP fluctuations and
strong non-Fermi-liquid effects due to electronic fluctuations;
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considering a microscopic model, the nematic and SDW
transitions merge below a temperature Tmerge < Tc and con-
tinue to zero temperature as a first-order single nematic-SDW
transition line [116]. This study finds that superconductivity
has a strong effect on this quantum phase transition, allowing
strong fluctuations to exist near it; these transition lines
backbend due to superconductivity, and there may be a shift
of the QCP beneath the superconducting dome [117].

The existence of a QCP has been linked to the occurrence
of superconductivity across several classes of unconventional
superconductors with a superconducting dome surrounding
it in the T -x phase diagram and with optimal Tc near the
QCP. It is by now widely believed that critical quantum
fluctuations are important for the superconductivity [118–
120]. These fluctuations enhance interactions and result in
an enhancement of electronic correlations upon approaching
the QCP [52,62,121–126].

IX. CONCLUSIONS

We have studied many-body effects leading to uncon-
ventional superconductivity and to competing phases of
charge, orbital, and spin ordering of the Na-111 family
of pnictides containing partially filled 3d orbitals. Using
polarization-resolved Raman spectroscopy, we find that the
interorbital attractive interaction, which can be tuned by
isovalent Co substitution for Fe, makes the system receptive to
the Pomeranchuk-like instability with d-wave symmetry, and
that strong critical fluctuations toward this instability dominate
the entire tetragonal phase. In the superconducting phase, these
fluctuations acquire coherence and undergo a metamorphosis
into in-gap collective modes of extraordinary strength. Our
finding is an example of non-Fermi-liquid behavior, uncon-
ventional superconductivity, and electronic ordering emerging
from strong multipolar interactions among 3d electrons, which
should be a more generic phenomenon relevant to other
compounds containing partially filled d or f orbitals.
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APPENDIX A: ANALYSIS OF RAMAN SPECTRA

The Raman spectra were corrected for the spectral response
of the spectrometer and detector in obtaining the Raman

(a) (b)

FIG. 13. Correction of Raman spectra illustrated for a doping
x = 0.02 and temperature 5 K in the XY symmetry channel. (a)
Raman scattering intensity (black solid line) shown together with
a luminescence background L(ω) (red dashed line) to be subtracted.
(b) Raman susceptibility after background subtraction and conversion
to χ ′′

XY (ω,T ,x) (see the text).

scattering intensity, IeI eS (ω) = (1 + n)χ ′′(ω) + L(ω). Here,
L(ω) is a small luminescence background and eI and eS

are the polarization vectors for the incident and scattered
photons for a given scattering geometry with respect to the
unit cell [Fig. 1(b)]. The recorded Raman intensity was
background-subtracted with a near-linear line and a constant
determined for each polarization geometry as illustrated in
Fig. 13.

APPENDIX B: COUPLING OF POMERANCHUK
FLUCTUATIONS TO THE RAMAN PROBE

The goal of this appendix is to show microscopically that
the photons in the B2g configuration are coupled to the local
orbital fluctuations shown in Fig. 1(f). As the orbital character
of Raman-driven excitations plays a central role in our analysis,
we derive this coupling explicitly. Apart from the transition
between dxz and dyz orbitals, the dxy orbital excitations are
accessible in the B2g configuration. The Raman response,
Eq. (2), is determined by the Raman operators ρ̃I,S discussed
in detail below.

We point out that the standard effective-mass approxima-
tion [64,67,127] is applicable only to pockets derived from a
single nondegenerate band with well-defined orbital content.
This is the case for the γ pocket derived predominantly from
dxy orbitals; see Figs. 1(c)–1(e). Within the effective-mass
approximation, however, to the extent that this pocket is
approximately circular, the B2g coupling to the γ pocket is
relatively weak, and we focus on the other two electron and
hole pockets at the M and at the � points, respectively.

Consider the Raman coupling to the α/β hole pockets first.
It is convenient to use the symmetry-constrained k·p Luttinger
Hamiltonian [128],

H�(k) =
[
ε� + k2

2m�
+ 2ãkxky c̃(k2

x − k2
y)

c̃
(
k2
x − k2

y

)
ε� + k2

2m�
− 2ãkxky

]
.

(B1)
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Here the parameters ε� , m� , ã, and c̃ are determined by a
fit to the five-band tight-binding model or by first-principles
calculations, which are tabulated in Ref. [128] for selected
iron superconductors. We set ã = c̃, which corresponds to
circular hole FSs. At the � point, k = 0, the two Bloch
states are degenerate. These states are characterized by well-
defined orbital content, and we denote the creation operators
of these states by d

†
α=1(2),k = d

†
xz(yz),k. In terms of these

operators, the Hamiltonian (B1) takes the form Ĥ�(k) =∑
α,β=1,2 H�

α,β(k)d†
α,kdβ,k. The representation (B1) is referred

to as an orbital to be contrasted with the band representation
obtained by diagonalization of (B1). The Raman coupling to
the α/β pockets is a matrix in orbital space [19,129],

ρ̃
I,S
� =

∑
i,j

eI
i e

S
j

∑
k

∑
s,t

∂2H�
s,t (k)

∂ki∂kj

d
†
skdtk. (B2)

In the single-band approximation, the orbital indices are re-
dundant, and the more familiar effective-mass approximation
results.

Substitution of Eq. (B2) in Eq. (B1) gives for the Raman
vertex in B2g geometry

ρ̃
I,S
� ∝

∑
k

(d†
xz,kdxz,k − d

†
yz,kdyz,k). (B3)

Therefore, the physical meaning of the B2g Raman probe is the
quadrupole excitations causing orbital population imbalance,
as illustrated in Fig. 1(f).

To understand the implications of the B2g Raman probe
in the band representation, one diagonalizes the Hamiltonian
(B1), which yields α and β bands with Bloch states created by
the operators α

†
k and β

†
k, respectively. In the band representa-

tion, the Raman vertex takes the form

ρ̃
I,S
� ∝

∑
k

sin 2φk(α†
kαk − β

†
kβk)

+
∑

k

cos 2φk(α†
kβk + β

†
kαk), (B4)

where φk is the angle formed by the vector k and the x direction
in the BZ. The first intraband contribution in (B4) describes
the out-of-phase breathing of the α and β bands with the
amplitude changing as sin 2φk, as shown in Fig. 1(f). The
nodes of the intraband B2g excitation are along kx and ky

as expected. We conclude that the Raman response in B2g

symmetry couples directly to the Pomeranchuk fluctuations of
the FS. The second, interband part of the coupling (B4) plays
a role in the temperature and frequency dependence of the B2g

response.
The electron pockets coupling to photons can be analyzed

along the same lines as is done above for holes using the same
effective Hamiltonian approach. Instead of Eq. (B1), we have
for the electron pockets [128]

h±
M (k) =

[
ε1 + k2

2m1
± a1kxky −iv±(k)

iv±(k) ε3 + k2

2m3
± a3kxky

]
,

(B5)

where the upper and lower signs refer to the two electron
pockets, v± ≈ v(±kx + ky), and a1,3, m1,3, ε1,3, are v are

parameters to be fixed by matching to the band-structure
calculations. The matrix (B5) for the + (−) signs acts in the
space of Bloch states that have xz, xy (yz, xy) orbital content.
Again, the electron equivalent of Eq. (B2) tells us that the
B2g coupling excites the π phase-shifted breathing of the two
electron pockets. We obtain for an intraband contribution

ρ̃
I,S
M ∝

∑
k

F (φk)(δ†kδk − ε
†
kεk). (B6)

Equation (B6) shows that photons in the B2g configuration
cause the two electron pockets to breathe with a phase
difference of π .

APPENDIX C: RELAXATIONAL MODE
FITTING PROCEDURE

The shape of the Raman response χ ′′
XY (ω,T ,x) with the

relaxational mode (RM) and the emergent critical behavior
above TS(T ,x) can be described by an expression for interact-
ing susceptibilities given by

χXY (ω,T ,x) = λ2 χ
(0)
XY (ω,T ,x)

1 − gχ
(0)
XY (ω,T ,x)

. (C1)

Here, λ is the coupling of light to the quadrupole charge-
density fluctuations in XY symmetry (mainly to the β band),
χ

(0)
XY (ω,T ,x) is the noninteracting susceptibility, and g is the

coupling constant.
Raman spectroscopy as a dynamic probe is well-

suited to account for the relaxation processes that deter-
mine [χ (0)

XY (ω,T ,x)]′′. Toward that end, we assume that
[χ (0)

XY (ω,T ,x)]′′ is controlled by a single energy scale, �T .
In addition, we assume it to saturate at large frequencies.
Since at low frequencies [χ (0)

XY (ω,T ,x)]′′ ∝ ω, we model it
as [χ (0)

XY (ω,T ,x)]′′ = C arctan(ω/�T ), where C is a constant.
Correspondingly, causality yields

χ
(0)
XY (ω,T ,x) = C

π
log

(ω + i�T )2 − �2

(ω + i�T )2
, (C2)

where � is a high-frequency cutoff. The scale �T contains
contributions from a few elastic and inelastic processes listed
below. While for zero momentum the intraband processes are
forbidden [19,130], this is not so in the present case with finite
optical penetration depth. In addition, the interband transitions
at high temperatures make a contribution to [χ (0)

XY (ω,T ,x)]′′
that scales as ω/T . Recently, the scattering mechanism
that involves both the disorder and long-wavelength critical
quadrupole fluctuations was shown to give rise to a nearly T -
linear scattering rate [89]. This contribution is expected to grow
with doping. We also note Aslamazov-Larkin corrections due
to fluctuations at momentum Qπ,π = (π/a,π/a) [13,34,131]
that are quite different from the quadrupolar fluctuations,
which also contribute to the scattering rate, ∼2kBT , since
the velocities of electrons and holes are antiparallel. Unlike
the above-mentioned contribution, the Aslamazov-Larkin con-
tribution weakens with doping as the deviation from perfect
nesting suppresses the coupling of fluctuations at Qπ,π to the
zero-momentum quadrupolar fluctuations [132]. We also note
that the elastic scattering off the disorder yields a constant
T -independent contribution to the scattering rate [133], which
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grows with doping. All of the above scattering processes
contribute to [χ (0)

XY (ω,T ,x)]′′. Our results of the QEP scaling
are nevertheless universal because the exact temperature
dependence of �T at bare level without the effects of
quadrupole attraction is not essential. What is essential is that
the relaxation rate in the renormalized Raman susceptibility
Eq. (C1) is reduced compared to the bare value �T . Therefore,
the reduction in the observed width of [χXY (ω,T ,x)]′′ reflects
the tendency to order at the Pomeranchuk instability.

For ω � �T , substitution of Eq. (C2) in Eq. (C1) yields
the following relaxational expression for the RM of the χ ′′

XY

susceptibility:

χ ′′
XY (ω,T ,x) ∝ ωωP

ω2
P (T ,x) + ω2

, (C3)

where ωP (T ,x) = �T [1/g̃ − log(�/�T )] and g̃ = Cg. Equa-
tion (C1) ensures the critical behavior with temperature
above TS(x) and Tc(x) of the static susceptibility where
1/χXY (0,T ,x) ∝ 1/χ

(0)
XY (0,T ,x) − g. Here θ (x) is defined by

g in terms of χ
(0)
XY (0,θ,x) = 1/g.

Our basic assumption of attraction in the d± p-h channel
follows from the critical enhancement of χXY (ω,T ,x) and
implies g > 0. For higher dopings, the electron and hole FSs
uncouple, and our assumption of attraction in the d± p-h
channel eventually breaks down. Hence, the criticality persists
but weakens with doping.

We use expression (C3) with a simultaneous fit of the RM as
a function of frequency, temperature, and doping dependence.
Assuming a weak temperature dependence of the scattering
rate, we use the expansion �T = �θ + αT . Here ω and T

are fitting variables, and �θ , θ , and α are fitting parameters.
Figure 14(f) shows a universal fit to χ ′′

XY (ω,T ,x = 0) in
a range of temperatures above TS versus frequency and
temperature. Above the TS(x) and Tc(x) lines, χ ′′

XY (ω,T ,x)
can be decomposed into three components [Fig. 5(a)]. The
intensity of both the continuum and of the �240 cm−1 mode
diminishes rapidly with doping, and vanishes near x 	 0.025
[Figs. 5(c) and 5(d)]. Importantly, the orbital content of the
larger γ FS is mainly composed of dxy orbitals, while the
α and β FSs primarily have dxz and dyz orbital character
[Fig. 1(c)] [83]. At the M point, the inner (outer) part of the
δ/ε FS has dxz and dyz (dxy) orbital character. The continuum
and the �240 cm−1 mode likely involve the β band as its
FS reduces with doping [see Figs. 1(b) and 1(d)], with the
former due to intraband excitations and the latter due to an
interband-like excitation with a 240 cm−1 gap consistent with
quadrupole excitations as verified by scaling of χXY

0 (T ,x) to
NQR data (see Sec. IV). This finding is consistent with first-
principles calculations taking into account spin-orbit coupling
[Fig. 1(e)].

Figure 5(c) displays the intensity dependence of the RM
with doping, which is seen to persist for all dopings. Figure
5(e) shows the doping dependence of θ (x), which is observed
to decrease close to linear for increasing dopings becoming
negative near x = 0.022. This behavior is consistent with that
obtained from the analysis of the static Raman susceptibility
χXY

0 (T ,x) shown in the T -x phase diagram [Fig. 3(a)].
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χ’

’  
(ω

,T
) [

a.
u.

]
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FIG. 14. Decomposition of the Raman susceptibility χ ′′
XY (ω,T ,x)

in the B2g-symmetry channel. χ ′′
XY (ω,T ,x) with the three-component

fit for x = 0 in a range of temperatures above the structural transition
showing intensity vs frequency and temperature.

APPENDIX D: FIRST-PRINCIPLES BAND-STRUCTURE
CALCULATIONS

The first-principles calculations use a combination of
density-functional theory and dynamical mean-field theory
(DFT+DMFT) [134] as in Ref. [135]. It is based on the full-
potential linear augmented plane-wave method implemented
in WIEN2K [136] for carrying out first-principles calculations.
The electronic charge is computed self-consistently in the
DFT+DMFT density matrix. The continuous-time quantum
Monte Carlo method [135,137] was used to solve the quantum
impurity problem using the Coulomb repulsion in its fully
rotational form.

We used the experimentally determined lattice structure
for NaFeAs with the lattice constants a = 3.947 29 Å, b =
6.991 12 Å, and atomic positions z = 0.5 for Fe, z1 = 0.702 34
for As, and z2 = 0.146 73 for Na [138]. The calculations were
done in the paramagnetic state with Coulomb interactions U =
5.0 eV and JH = 0.8 eV at a temperature of T = 116 K (see
Fig. 15).

APPENDIX E: SYMMETRY MODES IN
MOMENTUM SPACE

In XY symmetry, modulations of the FSs around the
� and M point with nodes along �X and �Y lead to a
neutral quadrupole charge-density mode with either d++ or
d± symmetry of the BZ; see Fig. 6(a). The critical charge
fluctuations above the structural transition TS originate from
local electron-hole excitations with charge transfer between
the dxz and dyz orbitals on the Fe-sites, which introduces a
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FIG. 15. Momentum- and frequency-resolved electronic spectra A(k,ω) along the �-M high-symmetry line. (a) DFT without spin-orbit
coupling (SOC). (b) DFT with SOC. (c) DFT + DMFT without SOC. (d) DFT + DMFT with SOC. Without SOC, the eigenvalues of the
electronic states with xz and yz orbital character are degenerate at the zone center � point due to the fourfold symmetry of the tetragonal
crystal structure in the paramagnetic state. Including SOC lifts this degeneracy, leading to a splitting of the xz/yz states, roughly 70 meV at
the � point in the static mean-field treatment (DFT+SOC). However, strong electronic correlations strongly renormalize this static mean-field
splitting to �10 meV in the DFT+DMFT+SOC calculation.

quadrupole moment in B2g or XY symmetry. These local dxz

and dyz charge-transfer processes are the primary excitations
sustaining the quadrupole pattern. Secondly, the phasing
between the � and M point is dictated by interband interactions
across the Fermi level at the � and M point, as illustrated
in Fig. 6(a). The FSs elongate and squeeze along �M and
�M ′ into quadrants (d++) or half-quadrants (d±) defined
by the nodes. The quadrupole mode is neutral where the
charge at both the � and M point is conserved as well as the
overall charge of all participating FSs. Hence, the quadrupole
mode results from deformations of the FSs in which charge
redistribution by intraband and interband transitions causes
a quadrupole pattern of changing positive and negative

half-quadrant regions of more or less charge. Out-of-phase
charge modulation yields d± symmetry where the FSs at
the � and M point elongate and squeeze in-phase, while
in-phase charge modulation corresponds to d++ symmetry. Si-
multaneous (π,π ) and (−π, − π ) two-electron-hole exchange
interactions will promote d± symmetry.

The in-phase breathing mode predicted by Chubukov et al.
[103] and later verified by Klein et al. [66] in A1g symmetry
is illustrated in Fig. 6(b). This in-phase breathing mode is
a particle-hole exciton that forms in A1g symmetry and is
consistent with an s± condensate. It is represented by in-phase
breathing of the electron and hole FSs and entails charge
transfer between the two pockets.
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