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We use neutron resonance spin echo and Larmor diffraction to study the effect of uniaxial pressure on
the tetragonal-to-orthorhombic structural (Ts) and antiferromagnetic (AF) phase transitions in iron pnictides
BaFe2−xNixAs2 (x = 0,0.03,0.12), SrFe1.97Ni0.03As2, and BaFe2(As0.7P0.3)2. In antiferromagnetically ordered
BaFe2−xNixAs2 and SrFe1.97Ni0.03As2 with TN and Ts (TN � Ts), a uniaxial pressure necessary to detwin the
sample also increases TN , smears out the structural transition, and induces an orthorhombic lattice distortion at
all temperatures. By comparing temperature and doping dependence of the pressure induced lattice parameter
changes with the elastoresistance and nematic susceptibility obtained from transport and ultrasonic measurements,
we conclude that the in-plane resistivity anisotropy found in the paramagnetic state of electron underdoped iron
pnictides depends sensitively on the nature of the magnetic phase transition and a strong coupling between the
uniaxial pressure induced lattice distortion and electronic nematic susceptibility.

DOI: 10.1103/PhysRevB.93.134519

I. INTRODUCTION

The parent compounds of iron pnictide superconductors
such as BaFe2As2 and SrFe2As2 exhibit a tetragonal-to-
orthorhombic structural transition at Ts followed by devel-
opment of collinear antiferromagnetic (AF) order along the
a axis of the orthorhombic lattice below TN [left inset in
Fig. 1(a) and Ts ≈ TN ] [1–6]. Upon electron doping via
partially substituting Fe by Co or Ni to form BaFe2−xTxAs2

(T = Co, Ni), the nearly coupled structural and magnetic
phase transitions in BaFe2As2 become two separate second
order phase transitions at Ts and TN (Ts > TN ) that decrease
in temperature with increasing x [7–10]. On the other hand, the
coupled first-order structural and magnetic phase transitions in
SrFe2As2 [4], while decreasing in temperature with increasing
x in SrFe2−xTxAs2, remain coupled first-order transitions
leading up to superconductivity [11].

Because the structural and magnetic phase transitions in
BaFe2−xTxAs2 and SrFe2−xTxAs2 occur below room temper-
ature, iron pnictides in the orthorhombic AF ground state
will form twin domains with AF Bragg peaks appearing at
the in-plane (±1,0) and (0,±1) positions in reciprocal space
[right inset in Fig. 1(a)] [6]. To probe the intrinsic electronic
properties of these materials, one can apply uniaxial pressure
along one axis of the orthorhombic lattice to obtain single
domain samples [12–15]. Indeed, transport measurements on
uniaxial pressure detwinned electron-doped BaFe2−xTxAs2

(T = Co, Ni) reveal in-plane resistivity anisotropy in the AF
state that persists to temperatures above the zero-pressure
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TN and Ts [12–15]. On the other hand, similar transport
measurements on uniaxial pressure detwinned SrFe2−xTxAs2

(T = Co, Ni) indicate vanishingly small resistivity anisotropy
at temperatures above the zero pressure coupled TN and Ts

[16–18]. Figure 1(b) compares temperature dependence of the
resistivity anisotropy [defined as �ρ = (ρb − ρa)/(ρb + ρa),
where ρa and ρb are resistivity along the a and b axis
of the orthorhombic lattice, respectively] obtained under
∼20 MPa uniaxial pressure for BaFe2As2, BaFe1.97Ni0.03As2,
SrFe1.97Ni0.03As2, and SrFe2As2. Consistent with earlier
works [12–18], we find that resistivity anisotropy is much
larger in BaFe2As2 and BaFe1.97Ni0.03As2 at temperatures
above TN .

Although resistivity anisotropy in the paramagnetic state
of the iron pnictides under applied uniaxial pressure suggests
the presence of an electronic nematic phase that breaks the
in-plane fourfold rotational symmetry (C4) of the underly-
ing tetragonal lattice [19–24], much is unclear about the
microscopic origin of the in-plane resistivity anisotropy and
electronic nematic phase [25–38]. Since neutron-scattering
experiments reveal that uniaxial pressure necessary to detwin
the sample also increases TN of the system, the observed
in-plane resistivity anisotropy above the zero pressure TN and
Ts may arise from the increased TN and intrinsic anisotropic
nature of the collinear AF phase [39,40]. Furthermore,
while it is generally assumed that the uniaxial pressure for
sample detwinning has negligible effect on the lattice pa-
rameters of the iron pnictides [12–15], the precise effect of
uniaxial pressure on structural distortion of these materials
is unknown. From neutron extinction effect measurements, a
uniaxial pressure is suggested to push structural fluctuations
related to the orthorhombic distortion to a temperature well
above the zero-pressure value of Ts [41], similar to the
effect on the resistivity anisotropy [12–15]. To understand
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FIG. 1. (a) The schematic electronic phase diagram of
BaFe2−xNixAs2 with arrows marking x = 0, 0.03, and 0.12 samples
described in the present study. The AF, PM, Ort, Tet, IC, SC are
antiferromagnetic, paramagnetic, orthorhombic, tetragonal, incom-
mensurate, and superconducting states, respectively [10]. The left
inset shows the direction of the applied uniaxial pressure (marked
by the vertical arrows) and the spin arrangements of Fe in the AF
ordered iron pnictides, where a and b are the orthorhombic axes. The
right inset shows the corresponding reciprocal lattice. All the marked
positions have AF or nuclear Bragg peaks for a twinned sample, while
the positions marked by open symbols have vanishing scattering
intensity for a detwinned sample. (b) Temperature dependence of
the resistivity anisotropy for BaFe2−xNixAs2 and SrFe2−xNixAs2

(x = 0,0.03) under P ≈ 20 MPa. (c) Summary of temperature
dependence of the uniaxial pressure induced lattice distortion at
P ≈ 20 MPa [δ(P ≈ 20 MPa) − δ(P = 0 MPa)] for BaFe2−xNixAs2

(x = 0,0.03,0.12) and SrFe1.97Ni0.03As2. The actual data for x =
0.03,0.12 are normalized to 20 PMa assuming a linear relationship
between uniaxial pressure and δ. Uniaxial pressure induced lattice
distortion vanishes rapidly below TN marked by the vertical dashed
lines in (b) and (c).

the microscopic origin of the in-plane resistivity anisotropy
in the paramagnetic state [12–15], it is important to establish
the effect of a uniaxial pressure on the magnetic and structural
phase transitions of BaFe2−xTxAs2 and SrFe2−xTxAs2, and
determine if the electronic anisotropy in the paramagnetic

tetragonal phase of iron pnictides is intrinsic [42,43], or
entirely due to the symmetry breaking uniaxial pressure
applied to the materials [44,45]. It is also important to deduce
what role the nature of the AF transition plays in the nematic
susceptibility [17,25,26,38] and how the latter depends on the
uniaxial pressure.

In this article, we use neutron resonance spin echo (NRSE)
[46,47] and Larmor diffraction [48] to study the effect
of uniaxial pressure on the structural and magnetic phase
transitions in electron-doped iron pnictides BaFe2−xNixAs2

with x = 0,0.03,0.12 [9,10] and SrFe1.97Ni0.03As2 [18],
and in the isovalently doped BaFe2(As0.7P0.3)2 [49]. While
the underdoped BaFe1.97Ni0.03As2 (TN = 109 K and Ts =
114 K) exhibits a second-order AF transition below Ts ,
SrFe1.97Ni0.03As2 has coupled first-order structural and mag-
netic phase transitions at TN = Ts ≈ 175 K [50]. The electron
overdoped BaFe1.88Ni0.12As2 (Tc = 18.6 K) and isovalently
doped BaFe2(As0.7P0.3)2 (Tc = 30 K) have a paramagnetic
tetragonal structure at all temperatures without static AF
order. Figure 1(c) summarizes the key experimental result
of the present work, where the temperature dependencies
of the uniaxial pressure induced orthorhombic lattice distor-
tions δ(P ≈ 20 MPa) − δ(P = 0 MPa) are determined using
neutron Larmor diffraction for BaFe2As2, BaFe1.97Ni0.03As2,
SrFe1.97Ni0.03As2, and BaFe1.88Ni0.12As2 [we defined the
lattice distortion δ = (a − b)/(a + b) with a and b being the
orthorhombic lattice parameters]. Remarkably, the magnitude
of our determined structural nematic susceptibility dδ/dP ∝
δ(P ) − δ(0) in Fig. 1(c) is comparable in all three materials
that have a structural phase transition, unlike the very different
values of the resistivity anisotropy displayed in Fig. 1(b).
Comparing these results with those of the elastoresistance
and nematic susceptibility obtained from transport [20,23,24]
and from elastic shear modulus/ultrasound spectroscopy
measurements [38,51,52], we conclude that the resistivity
anisotropy in the paramagnetic phase of the iron pnictides
depends sensitively on whether the underlying magnetic phase
transition is first or second order. We also find a strong coupling
between the uniaxial pressure induced lattice distortion and
the electronic nematic susceptibility, and have to be cautious
in directly relating resistivity anisotropy to the nematic order
parameter in the iron pnictides.

II. RESULTS

A. Experimental results

Our experiments were carried out using conventional
thermal triple-axis spectrometer PUMA and three axes spin-
echo spectrometer (TRISP) at the Forschungsneutronenquelle
Heinz Maier-Leibnitz (MLZ), Garching, Germany. The princi-
ples of NRSE and Larmor diffraction are described elsewhere
[50]. Single crystals of BaFe2−xNixAs2, SrFe2−xNixAs2,
and BaFe2(As0.7P0.3)2 were grown by self-flux method as
described before [49,53]. We define the momentum transfer
Q in the three-dimensional reciprocal space in Å−1 as Q =
Ha∗ + Kb∗ + Lc∗, where H , K , and L are Miller indices and
a∗ = â2π/a, b∗ = b̂2π/b, c∗ = ĉ2π/c with a ≈ b ≈ 5.6 Å,
and c = 12.96 Å for BaFe2−xNixAs2. In this notation, the
AF Bragg peaks should occur at (±1,0,L) (L = 1,3,5, . . . )
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FIG. 2. (a) Magnetic order parameters at Q = (1,0,1) for the zero
(P = 0) and uniaxial pressured (P ∼ 15 MPa) BaFe1.97Ni0.03As2. TN

is 109 K for an unpressured sample (blue diamonds). Upon applying
uniaxial pressure of P ≈ 15 MPa, the TN is enhanced to 118 K and
the sample becomes 100% detwinned as seen by PUMA and TRISP
measurements. (b) The energy linewidth (half width at half maximum,
�) of the magnetic Bragg peak Q = (1,0,1) measured by NRSE using
TRISP for BaFe1.97Ni0.03As2. The blue and red dashed lines indicate
TN in P = 0 and 15 MPa unaixial pressure, respectively. The slight
larger errors of � near TN is due to low statistics data.

positions in reciprocal space of a completely detwinned sample
[right inset in Fig. 1(a)]. For neutron-scattering experiments,
single crystals are aligned in either the [H,K,H + K] [41] or
[H,K,0] zone.

We first discuss the effect of uniaxial pressure on the
collinear AF order in BaFe2−xTxAs2. In previous neutron-
scattering work on BaFe2−xCoxAs2, the Néel temperature (TN )
was found to be pushed to higher temperature under uniaxial
strain field, forming a broader magnetic transition [39,40].
Moreover, it seems that the increase in TN depends on the
annealing condition [41,54]. Although the TN enhancement
was attributed to uniaxial strain aligned fluctuating magnetic
domains, the effect of uniaxial pressure on the ordered moment
remains elusive and the nature of the TN enhancement is still
under debate [40,41,54].

By aligning single crystals in the [1,0,1] × [0,1,1] scat-
tering plane [41], we were able to determine TN , detwinning
ratio, as well as the ordered moment of the system under zero
and finite uniaxial pressures. Figure 2(a) shows temperature
dependence of the (1,0,1) and (0,1,1) magnetic scattering
intensity for BaFe1.97Ni0.03As2 obtained using PUMA [left
axis in Fig. 2(a)] and TRISP (right axis). The two sets of
data are in excellent quantitative agreement with each other.
Under the applied uniaxial pressure of P ≈ 15 MPa, the
Néel temperature increases from TN ≈ 109 K (at P = 0) to
TN ≈ 118 K. The magnetic scattering intensity [Fig. 2(a)] in
the (1,0,1) peak becomes approximately twice as large as
in the twinned sample, whereas the (0,1,1) peak vanishes,

suggesting that the sample is completely detwinned and the
applied uniaxial pressure does not significantly affect the
ordered moment.

To test whether the TN increase is an intrinsic feature
of the system, we note that the magnetic order parameter
under uniaxial pressure has a round tail around TN [39,40],
suggesting that the TN enhancement could arise from enhanced
slow spin dynamics (critical scattering) under inhomogeneous
uniaxial strain field and cannot be resolved by conventional
triple-axis neutron diffraction due to its coarse energy resolu-
tion (�E ≈ 0.3–1 meV). To clarify the nature of the increase
in TN , we have measured the energy linewidth [� � 0; see
Fig. 2(b)] of the quasielastic scattering for magnetic reflection
(1,0,1) using high-energy resolution (�E ≈ 1 μeV) NRSE
at TRISP [55]. As seen in Fig. 2(b), the � at all measured
temperatures are resolution limited, indicating that the increase
in magnetic scattering intensity below TN ≈ 118 K is elastic
(� � 1 μeV), and an intrinsic nature of the system.

To determine the effect of uniaxial pressure on the
tetragonal-to-orthorhombic phase transition in iron pnictides,
we carried out neutron Larmor diffraction experiments ca-
pable of measuring minor change of lattice spacing d =
2π/|Q(H,K,L)| and its spread �d with a resolution better
than 10−5 in �d/d [inset in Fig. 3(a)] [48,50]. We focus on
(4,0,0) and (0,4,0) nuclear Bragg reflections corresponding to
a d spacing d ≈ a/4, which we measured in BaFe2−xNixAs2

(x = 0,0.03,0.12), SrFe1.97Ni0.03As2, and BaFe2(As0.7P0.3)2

both on freshly prepared samples (uniaxial pressure P = 0)
and under uniaxial pressure (P ≈ 10,20 MPa). Figure 3 shows
the temperature and pressure dependence of the d spread
for these samples. The d spread is characterized by the
FWHM (full width at half maximum) of the lattice spacing
distribution f (�d/d), which is assumed to be a Gaussian
distribution [50]. The diamonds in Fig. 3(a) show temperature
dependence of the FWHM for BaFe2As2 at zero pressure.
Similar to BaFe1.97Ni0.03As2 [45], temperature dependence of
FWHM follows a Curie-Wiess form and peaks around the
zero-pressure value of TN ≈ Ts . Upon application of a uniaxial
pressure P ≈ 20 MPa, the magnitude of FWHM increases at
all temperatures and now peaks at an enhanced TN = 144 K
[Fig. 3(a)].

Figure 3(b) shows similar data for SrFe1.97Ni0.03As2,
where there are coupled strong first-order structural and
AF phase transitions at TN = Ts = 175 K [11]. Compared
with BaFe2As2, where the AF phase transition is weakly
first order and structural transition is second order [5], the
AF and structural transition induced changes in FWHM are
much smaller and confined to temperatures close to TN ≈
Ts in SrFe1.97Ni0.03As2 [Fig. 3(b)]. Under a uniaxial pres-
sure P ≈ 20 MPa, however, both the FWHM and TN increase
dramatically with solid lines showing Curie-Wiess fits to the
data. For BaFe1.97Ni0.03As2, application of a P ≈ 10 MPa
uniaxial pressure transforms temperature dependence of the
FWHM, which forms a broad peak above the zero-pressure
value of Ts . Upon releasing the uniaxial pressure [P released,
filled green diamonds in Fig. 3(c)], the system goes back to
the original unpressured fresh state.

Figure 3(d) compares temperature dependence of the
FWHM for electron overdoped BaFe1.88Ni0.12As2 and
BaFe2(As0.7P0.3)2, where both materials are in the param-
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(a) Temperature dependence of �d/d in FWHM for the (4,0,0) Bragg
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where A, B, and T1 are fitting parameters]. (b) Similar data for
SrFe1.97Ni0.03As2. The vertical blue and red dashed lines in (a)
and (b) mark the TN of the sample at zero and finite pressure,
respectively. (c) Similar data for BaFe1.97Ni0.03As2, where the vertical
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agnetic tetragonal state without static AF order. The weak
temperature dependence of FHWM in these materials suggests
that the large temperature dependence of FWHM in AF
ordered BaFe2−xNixAs2 (x = 0,0.03) and SrFe1.97Ni0.03As2 is
due to a strong magnetoelastic coupling. Although application
of a P ≈ 14 MPa uniaxial pressure on BaFe1.88Ni0.12As2

increases the absolute value of FWHM, it is still weakly
temperature dependent [Fig. 3(d)].

To further demonstrate the impact of uniaxial pressure
on the tetragonal-to-orthorhombic structural transition in
BaFe2−xNixAs2 (x = 0,0.03,0.12) and SrFe1.97Ni0.03As2, we
compare in Fig. 4 temperature dependence of the lattice
parameters along the orthorhombic a and b axis directions
under zero and finite uniaxial pressure. We first discuss results
for BaFe2−xNixAs2 with x = 0 [Figs. 4(a) and 4(b)] and
0.03 [Figs. 4(c) and 4(d)]. At P = 0, the lattice parameters
have a = b at temperatures above Ts (tetragonal phase) and
decrease linearly with decreasing temperature [open diamonds
and hexagons in Figs. 4(a) and 4(c)]. Upon application of a
uniaxial pressure, the system becomes orthorhombic at all tem-
peratures and the orthorhombic structural transition becomes
a crossover [filled diamonds and hexagons in Figs. 4(a) and
4(c)]. Figures 4(b) and 4(d) show temperature dependence of
the lattice orthorhombicity δ = (a − b)/(a + b) at different
uniaxial pressures for x = 0, and 0.03, respectively. For
unpressured fresh samples (P = 0), and after the pressure has
been released, the tetragonal structure becomes orthorhombic
below Ts and the AF order below TN further enhances
the lattice orthorhombicity [5]. Upon applying the uniaxial
pressure P ≈ 10, 15, and 20 MPa, the temperature dependence
of the lattice orthorhombicity becomes remarkably similar
to that of the B2g elastoresistance and nematic susceptibil-
ity of BaFe2−xTxAs2 obtained from transport [23,24] and
elastic shear modulus/ultrasound spectroscopy measurements
[38,51,52], respectively.

B. Theoretical Ginzburg-Landau analysis

To understand the temperature dependence of the pressure-
induced lattice orthorhombicity described in Figs. 4(b) and
4(d), we consider the Ginzburg-Landau free-energy formalism
used in previous works [20,38]:

F [ϕ,δ] = F0 + a

2
(T − T0)ϕ2 + B̃

4
ϕ4 + C66,0

2
δ2 − λδϕ−Pδ,

(1)
where the electronic nematic order parameter ϕ is coupled
linearly to the orthorhombic lattice distortion δ. It then follows
that (see the Appendix [50])

δ = (λ〈ϕ〉 + P )/C66,0, (2)

where C66,0 is the bare elastic constant that has no strong tem-
perature dependence and P is the conjugate uniaxial pressure
(stress) [38,41,50–52]. In the absence of the elasto-nematic
coupling (λ = 0), the nematic susceptibility χϕ = 1/[a(T −
T0)] is characterized by the Curie-Weiss temperature T0. Upon
considering the coupling between the nematic order parameter
ϕ and the structural lattice distortion δ (or equivalently, the
elastic shear strain ε6), the elastic susceptibility takes on the
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FIG. 4. Temperature dependence of the a and b lattice parameters and orthorhombicity δ under different uniaxial pressure conditions
(P = 0 fresh, ∼10, ∼15, ∼20, and 0 released MPa) for BaFe2−xNixAs2 (x = 0,0.03,0.12) and SrFe1.97Ni0.03As2. (a) Temperature dependence
of the a and b under P = 0 and 20 MPa uniaxial pressure for BaFe2As2. (b) Temperature dependence of δ under different uniaxial pressure
(P = 0 fresh, ∼20, and 0 released MPa). The vertical blue dashed line marks the TN/Ts . (c) Temperature dependence of the lattice parameters
a and b at P = 0 and 15 MPa for BaFe1.97Ni0.03As2. (d) Temperature dependence of δ under different uniaxial pressure (P = 0 fresh, ∼10,
∼15, and 0 released MPa). The open red diamonds and green hexagons are obtained by lattice thermal expansion measurements under uniaxial
pressure. The pink squares are measurements of an unpressured fresh sample, while blue circles are obtained after releasing P ≈ 10 MPa
uniaxial pressure. The blue circles and two pink squares below Ts are from zero pressure Larmor diffraction measurements. The pink squares
above Ts are obtained from thermal-expansion measurements. The vertical green and blue dashed lines in (c) and (d) mark the TN and Ts

of the sample at zero pressure, respectively. (e) Temperature dependence of the a and b for BaFe1.88Ni0.12As2. The lattice thermal expansion
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curves in (b), (d), (f), and (h) are fits using a Curie-Weiss functional form [50].
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form [20,38]

dδ

dP
= 1

C66,0

T − T0

T − T CW
s

(3)

with the renormalized nematic transition temperature T CW
s =

T0 + λ2/(aC66,0) that is increased compared to the bare
Curie-Weiss temperature T0. The pressure-induced lattice
distortions in Figs. 4(b) and 4(d) can be well described by
the Curie-Weiss functional form [50]. Therefore, uniaxial pres-
sure induced orthorhombic lattice distortion and its tempera-
ture dependence in undoped and underdoped BaFe2−xNixAs2

are directly associated with the nematic susceptibility [24,38].
Since the external uniaxial pressure explicitly breaks the
tetragonal lattice symmetry, it turns the nematic transition at
Ts = T CW

s into a crossover, as is clearly seen in Fig. 4.
If the in-plane resistivity anisotropy in electron under-

doped iron pnictides indeed arises from the coupling of
the uniaxial-pressure induced lattice distortion δ with the
nematic susceptibility, it would be interesting to determine the
effect of similar uniaxial pressure on the electron overdoped
sample, where the resistivity anisotropy is known to be much
weaker [14]. Figures 4(e) and 4(f) summarize the outcome
of the neutron Larmor diffraction experiments on uniaxial
pressured BaFe1.88Ni0.12As2, which is tetragonal (a = b) and
nonmagnetic at all temperatures in zero pressure [10]. Fig-
ure 4(e) shows temperature dependence of the lattice parameter
changes along the a axis (�a/a) and b axis (�b/b) under a
uniaxial pressure of P ≈ 14 MPa. For comparison, the thermal
contraction of aluminum is also shown [56]. Figure 4(f)
shows the temperature dependence of the orthorhombic lattice
distortion δ, which reveals a clear anomaly at Tc consistent
with ultrasonic spectroscopy measurements [51,52]. While
the applied uniaxial pressure induces orthorhombic lattice
distortion at 230 K, the magnitude of the lattice distortion,
δ ≈ 1.1 × 10−4, is about five times smaller than that of
BaFe2As2 and BaFe1.97Ni0.03As2 at 230 K. On cooling to
20 K, δ in BaFe1.88Ni0.12As2 increases to ∼2 × 10−4, while
δ in BaFe2As2 and BaFe1.97Ni0.03As2 becomes ∼2.5 × 10−3

near Ts [Figs. 4(b) and 4(d)], an order of magnitude larger than
that of the electron overdoped compound.

To understand how a uniaxial pressure affects the first-order
nature of the structural and magnetic phase transitions in
SrFe1.97Ni0.03As2, we compare in Figs. 4(g) and 4(h) tempera-
ture dependence of the lattice parameters and orthorhombicity
under the zero and finite uniaxial pressure. At zero pressure, the
first-order nature of the structural transition is clearly seen in
hysteresis of temperature dependence of the lattice parameters
and distortion [Figs. 4(g) and 4(h)]. Upon application of
P ≈ 20 MPa uniaxial pressure, the lattice orthorhombicity
no longer displays the first-order transition at Ts , but instead
becomes a crossover, similar to that observed in the undoped
and underdoped BaFe2−xNixAs2 [see Figs. 4(b) and 4(d)].

Assuming that the application of the modest uniaxial
pressure P ≈ 20 MPa can be considered in the linear-response
regime [45], we can estimate the elastic susceptibility from the
finite difference dδ/dP ∝ �(δ) = δ(P ≈ 20 MPa) − δ(P =
0) and compare it among the different compounds in the
iron pnictide family. Figure 1(c) compares temperature de-
pendence of δ(P ≈ 20 MPa) − δ(P = 0) for BaFe2−xNixAs2

(x = 0,0.03,0.12) and SrFe1.97Ni0.03As2 normalized for P ≈
20 MPa. For AF ordered BaFe2−xNixAs2 (x = 0,0.03) and
SrFe1.97Ni0.03As2, the magnitudes of the pressure-induced
lattice orthorhombicity are similar in the paramagnetic phase
and vanish rapidly upon entering into the AF ordered state.
Furthermore, the δ(P ≈ 20 MPa) − δ(P = 0) decreases for
the iron pnictides with reduced TN , and are much smaller for
BaFe1.88Ni0.12As2.

III. DISCUSSION

It is well known that the effect of increasing electron doping
in BaFe2−xTxAs2 is to suppress the static AF order and to
eliminate the low-temperature lattice orthorhombicity [7–10].
At zero pressure, BaFe2As2 first exhibits a second-order
structural transition from the high-temperature paramagnetic
tetragonal phase to a paramagnetic orthorhombic phase at Ts ,
followed by a discontinuous further orthorhombic structural
distortion and weakly first-order AF phase transition at TN

(TN < Ts) due to magnetoelastic coupling [5]. Upon Ni
doping in BaFe2−xNixAs2, the structural and magnetic phase
transitions are gradually separated and suppressed [Fig. 1(a)],
and become second order in nature [7–10]. Upon application of
a uniaxial pressure, the C4 rotational symmetry of the tetrag-
onal lattice is broken. Since the tetragonal-to-orthorhombic
symmetry of the underlying lattice can only be broken once,
Ts will become a crossover regardless of the magnitude
of the applied pressure, as our findings in Figs. 3 and 4
corroborate. The same conclusion holds for SrFe1.97Ni0.03As2

where the first-order structural transition becomes a crossover
[see Figs. 4(g) and 4(h)]. Therefore, both BaFe2−xNixAs2 and
SrFe1.97Ni0.03As2 under uniaxial pressure can only exhibit
AF phase transition. We note that our measurements and
theoretical Landau-Ginzburg analysis do not rely on the
microscopic nature of the nematic order parameter ϕ. In
particular, they apply equally well to the so-called Ising spin
nematic scenario [25–29] or the orbital order interpretation
of nematicity [30–36]. In fact, the ferro-orbital order ϕorb =
〈nxz − nyz〉 is always linearly coupled [26,36] to the Ising
spin nematic order parameter ϕspin = 〈Si · Si+x̂ − Si · Si+ŷ〉,
so the orbital order is generically present whenever ϕspin �= 0,
although there are theoretical indications that the converse
is not always true. In other words, the orbital order can
exist in the absence of static AF order [36], as is known to
be the case in FeSe [57–59]. In either case, the application
of external uniaxial stress renders the nematic transition a
crossover, so that the lattice distortion δ and consequently
ϕ are both finite above the zero-stress value of Ts . In this
light, the electronic anisotropy seen in the magnetic torque
[21] and scanning tunneling microscopy [43] measurements
above Ts without explicit external uniaxial pressure is likely
due to intrinsic local strain in these materials which breaks the
C4 rotational symmetry of the paramagnetic tetragonal phase.
Indeed, local strain-induced effect has recently been observed
in free standing BaFe2As2 above TN and Ts [60].

The key finding of the present work is that undoped
BaFe2As2, as well as BaFe1.97Ni0.03As2 and SrFe1.97Ni0.03As2

all exhibit similar magnitudes of the pressure-induced lattice
orthorhombicity [Figs. 1(c) and 4] and FWHM of �d/d near
TN (Fig. 3). This indicates that these samples experience

134519-6



IMPACT OF UNIAXIAL PRESSURE ON STRUCTURAL AND . . . PHYSICAL REVIEW B 93, 134519 (2016)

similar strain field under nominally similar applied uniaxial
pressure, thus suggesting that the doped Ni impurities do not
play an important role in determining the strain field inside
the sample. Theoretically, the electronic anisotropy of the
iron pnictides is expected to couple linearly to the lattice
orthorhombicity δ [26–29], as captured by the effective Landau
free energy in Eq. (1). The Curie-Weiss-like temperature
dependence of the uniaxial pressure induced lattice distortion
[Fig. 1(c)] is consistent with the temperature dependence of
the nematic susceptibility dδ/dP in Eq. (3) and agrees with
the results of Young’s modulus measurements [38]. This gives
us confidence that in the effective Landau description [50], the
uniaxial pressure-induced lattice distortion δ has a component
proportional to the electronic nematic order parameter ϕ via
Eq. (2), where one expects δ ∝ ϕ in zero pressure (P = 0).
Since δ has similar magnitude in BaFe2As2, BaFe1.97Ni0.03As2,
and SrFe1.97Ni0.03As2 (see Fig. 4), one would also expect
comparable values of ϕ in all three compounds. So if one
uses the resistivity anisotropy �ρ = (ρb − ρa)/(ρb + ρa) as
a proxy for the nematic order parameter, as has been widely
used in the literature [12,20,23,24], how does one then explain
the resistivity anisotropy differences in BaFe2−xTxAs2 [14]
and a much smaller resistivity anisotropy above TN [Fig. 1(b)]
in SrFe2−xTxAs2 family of materials [18]? The bare value of
the elastic shear modulus C66,0 that enters Eq. (A16) has no
strong temperature dependence [38] and from the Curie-Weiss
fits of the nematic susceptibility to Eq. (A20), we find it to be
roughly the same in all three compounds, C66,0 ≈ 50 GPa [50].
The only remaining unknown variable is the elastonematic
coupling constant λ, which could be material dependent but
not temperature dependent [20,38]. It is thus very challenging
to explain the qualitatively different temperature dependence
of the resistivity anisotropy in BaFe1.97Ni0.03As2 [monotonic,
blue diamonds in Fig. 1(b)] from that in BaFe2As2 and in
SrFe1.97Ni0.03As2 [both nonmonotonic, with a maximum at or
just below Ts]. One possible explanation for the nonmonotonic
temperature dependence of the resistivity anisotropy, recently
proposed in the context of FeSe [61], is to assume a
temperature-dependent coefficient of proportionality between
�ρ and ϕ:

�ρ(T ) = ϒ(T )ϕ(T ), (4)

such that ϒ(T ) tends to zero as T → 0, whereas ϕ(T ) is
expected to increase monotonically below Ts as the temper-
ature is lowered (consider for instance the mean-field result
ϕ(T ) ∝ √

Ts − T for the second-order phase transition).
Even with the introduction of ϒ(T ) in Eq. (4), which has

a meaning of the temperature-dependent scattering function,
it is extremely difficult to explain the much lower value
of �ρ in SrFe1.97Ni0.03As2 compared to BaFe2As2 and
BaFe1.97Ni0.03As2. In fact, from the Curie-Weiss fits of the
susceptibility data, we estimate the elastonematic coupling
constant λ to be a factor of ∼5 smaller in SrFe1.97Ni0.03As2

compared to BaFe1.97Ni0.03As2 [50]. Given the comparable
magnitudes of δ between the two compounds [see Figs. 4(d)
and 4(h)], one would then expect the nematic order parameter
ϕ to be a factor of ∼5 greater in SrFe1.97Ni0.03As2, to
ensure that the left-hand side of Eq. (2) remains of the
same magnitude. And yet the resistivity anisotropy �ρ ∝ ϕ

paints a diametrically opposite picture, being much smaller in
SrFe1.97Ni0.03As2.

We propose that a likely resolution of this dilemma lies in
the nature of the magnetic phase transition which we have so
far neglected in our analysis. Indeed, it is well established that
structural and magnetic phase transitions in SrFe2−xTxAs2 are
coupled first-order transitions that decrease with increasing
x before vanishing near optimal superconductivity [11],
while electron-doped BaFe2As2 has second-order magnetic
and structural phase transitions [7–10]. Although application
of a uniaxial pressure renders the structural transition a
crossover, the first-order nature of the magnetic transition
means a vanishing critical regime with suppressed low-energy
spin fluctuations at temperatures near TN , compared with
those of BaFe2−xTxAs2 where the AF phase transition is
second order. One expects the scattering of electrons on the
magnetic fluctuations, and hence the resistivity, to therefore
be smaller in the vicinity of the first-order magnetic transition,
as is the case in SrFe2−xTxAs2. We thus conclude that the
vanishing resistivity anisotropy above TN in the uniaxial
pressure detwinned SrFe2−xTxAs2 (compared with those of
BaFe2−xTxAs2) is likely rooted in the first-order nature of
the AF phase transition. This is also consistent with the
increased paramagnetic resistivity anisotropy on moving from
BaFe2As2 to BaFe1.96Co0.04As2 [15], where the magnetic
transition changes from weakly first order to second order
[5,7,8]. Similarly, the lack of large resistivity anisotropy in the
paramagnetic state of uniaxial pressured Ba1−xKxFe2As2 [62],
Ba1−xNaxFe2As2 [63], and Ca1−xLaxFe2As2 [64] is likely due
to the first-order nature of the paramagnetic to AF phase
transition in these materials. The phenomenological Landau
theory can be extended to include the coupling between
nematicity ϕ and the magnetic order parameter [38,50], and
our theoretical analysis shows [50] that the resulting uniaxial
pressure-induced lattice distortion δ(P ) − δ(0) reproduces
semiquantitatively the experimental findings in Fig. 1(c).

We conclude that the in-plane resistivity anisotropy found
in the paramagnetic state of iron pnictides depends sensitively
on the nature of the magnetic phase transition and a strong
elastonematic coupling between the uniaxial pressure induced
lattice distortion and the electronic nematic susceptibility.
We caution that while the resistivity anisotropy �ρ and its
dependence on the shear strain can be successfully used to
extract the quantity proportional to the nematic susceptibility
[20], care should be taken when equating �ρ with the
nematic order parameter itself. In particular, the nonmonotonic
temperature dependence of �ρ and its sensitivity to the
nature of the magnetic phase transition remain relatively little
explored and deserve further experimental and theoretical
studies.
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APPENDIX

1. Sample Information

The iron pnictide single crystals used in the present
study were prepared by the self-flux method [53]. The
samples have been characterized by resistivity, magnetiza-
tion, and neutron-scattering measurements. Figures 5 and 6
show the basic characterizations of BaFe1.97Ni0.03As2 and
SrFe1.97Ni0.03As2 samples, respectively. The basic character-
istics of the BaFe2As2 and BaFe1.88Ni0.12As2 samples can be
found elsewhere [41,53].
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FIG. 6. (a) Temperature dependent resistivity and its temperature
derivative for SrFe1.97Ni0.03As2. (b) Temperature dependence of the
(4,0,0) nuclear Bragg peak intensity measured for warming and
cooling. The dramatic increase of the (4,0,0) Bragg reflection signals
the change of structural distortion near Ts [41].

Figure 5(a) shows temperature dependence of the zero-
field-cooled (ZFC) and field-cooled (FC) magnetic sus-
ceptibility χ . Figure 5(b) is temperature derivative of χ ,
dχ/dT . Figure 5(c) shows temperature dependence of the
magnetic (1,0,1) Bragg peak (green diamonds) and (2,−2,0)
nuclear Bragg intensity (red squares). These results estab-
lish TN (green dashed line) and Ts (red dashed line) of
BaFe1.97Ni0.03As2. The TN was determined as 109 ± 2 K from
magnetic order parameter of the (1,0,1) magnetic Bragg peak
[Fig. 5(c)] and temperature-dependent magnetization mea-
surements [Fig. 5(a)]. The structural transition temperature
Ts is estimated from a feature shown in the magnetization,
[Fig. 5(b)], and the neutron extinction release of the (2,−2,0)
nuclear Bragg peak intensity [Fig. 5(c)] [41,65,66].

Figure 6(a) shows temperature-dependent resistivity R and
its derivative dR/dT for SrFe1.97Ni0.03As2. The dip of the
dR/dT at T = 175 K indicates the concomitant structural
and magnetic transition, different from the two features for
the separated TN and Ts in BaFe1.97Ni0.03As2. Figure 6(b)
is temperature dependence of the (4,0,0) nuclear Bragg
peak intensity. The dramatic increase of the peak intensity
also signals the structural transition. The observed intensity
hysteresis is consistent with first-order nature of the structural
and magnetic phase transition.

Large single crystals were selected and cut into rectangular
shapes along the orthorhombic [1,0,0] and [0,1,0] directions
by a high precession wire saw. The well-cut samples were
placed inside a uniaxial pressure device with b axis being the
direction of the applied pressure [41]. The applied uniaxial
pressures for the the samples range from P ≈ 10 MPa to P ≈
20 MPa, as described before.

In order to measure temperature and pressure dependence
of orthorhombic lattice distortion δ = (a − b)/(a + b), the
samples were mounted in the [H,K,0] scattering plane, where
orthorhombic (4,0,0) and (0,4,0) Bragg reflections can be
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measured. The effects of uniaxial pressure on tetragonal-
to-orthorhombic structural transition and uniaxial pressure
induced lattice orthorhombicity can be probed directly via
measuring temperature and pressure dependence of the (4,0,0)
and (0,4,0) reflections by neutron Larmor diffraction. For
magnetic measurements, the BaFe1.97Ni0.03As2 sample was
mounted in the [1,1,2] × [1,−1,0] scattering plane, where
both the (1,0,1) and (0,1,1) magnetic Bragg peaks can be
reached [41].

2. Neutron resonance spin-echo measurements

Neutron spin-echo (NSE) technique has been demon-
strated to be an effective method to measure the slow
dynamics (quasielastic scattering) with an extremely high-
energy resolution (∼1 μeV or even to ∼1 neV) [46]. By
combining triple axis spectrometer and neutron resonance
spin-echo (NRSE) techniques, the TRISP spectrometer at the
Forschungsneutronenquelle Heinz Maier-Leibnitz (MLZ) is
capable of measuring the lifetime of excitations with an energy
resolution �E ∼ 1 μeV in the range of about 1–200 μeV [67].

Compared with typical neutron-scattering experiments
where S(Q,ω) (E = �ω) is usually measured, neutron spin-
echo measures I (Q,τNSE) or P (Q,τNSE), where P is the
polarization of the scattered neutrons, which is the time Fourier
transform of the S(Q,ω) and thus provides direct information
of S(Q,ω) such as energy linewidth (lifetime) and intensity
[48,68].

The basic principle of NSE can be understood in a simplified
picture as shown in Fig. 7(a). We assume neutrons polarized
along the y direction with a velocity v1 enter the first

arm of NSE spectrometer with a constant magnetic field B
[Fig. 7(a)]. The precession angle in the first arm (L1) is then
φ1 = ωLt = γ |B|L1/v1, where γ = 2μN/� = 2.916 kHz/G
is the gyromagnetic ratio of neutron, L1 is the length of the
first neutron guide arm, and t is the time for neutron to travel
through the first arm. After interactions with the sample, some
neutrons are scattered into different energy with velocity v2.
In the second arm (L2), the neutron spin will precess along the
opposite direction, generating −φ2 = −ωLL2/v2. Assuming
L1 = L2 = L and v2 = v1 + δv, δv � v1, the net phase after
passing through both field regions will be φ = ωLL

v2
1

δv. Since

neutron energy transfer is �ω = 1
2m(v2

2 − v2
1) ≈ mv1δv, the

net phase can be written as

φ =
(

�ωLL

mv3
1

)
ω ≡ ωτNSE, (A1)

where τNSE is defined as

τNSE =
(

�ωLL

mv3
1

)
= 1.863 × 10−16B(G)L(cm)λ3(Å) (A2)

Note τNSE is not a physical time but a quantity determined by
specific parameters of the spectrometer, with the dimension of
time.

The polarization along y direction of the scattered neu-
trons can be analyzed and detected [Fig. 7(a)]. The average
polarization 〈σy〉 for neutrons with energy transfer �ω is

〈σy〉 = 〈cosφ〉 =
∫

dωS(Q,ω)cosωτNSE. (A3)

Thus 〈σy〉 is the cosine Fourier transform of S(Q,ω) for ω and
has been shown equal to the intermediate scattering function
I (Q,τ ). Therefore, the τNSE dependent polarization P (τ ), that
is, I (Q,τ ), provide direct information about S(Q,ω) [48].

In the NRSE, the precession fields and spin flippers are
replaced by four short bootstrap rf spin flipper coils [C1–C4
in Fig. 7(b)], which can improve the energy resolution by a
factor of 4 compared with the NSE with the same B and L.
The neutrons only precess in bootstrap while keep their spin
directions in L1 and L2. L2 can be tuned by translating the
flipper C4, by which the intensity with respect to the position
of C4, I (xc4), can be measured. For a fixed τ , the measured
intensity can be described as

I (xc4) = I0

2

[
1 + P cos

(
2π

�xc4
(xc4 − xc4,0)

)]
, (A4)

where P is the polarization, I0 is the averaged intensity of the
scattered beam, �xc4 is the period of the intensity modulation,
and xc4,0 is the reference position of C4.

The measurements of the P (τ ) for BaFe1.97Ni0.03As2 under
P ≈ 15 MPa are summarized in Fig. 8. Figure 8(a) shows
the intensity modulations for τ = 16.29 and 39.25 ps of
Q = (1,0,1) at T = 102 K. The polarizations are obtained
through fitting the data by Eq. (A4). The fitted P (τ ) for
different temperatures are plotted in Fig. 8(b). Assuming the
possible broadening in energy of the magnetic reflections is
caused by some slow dynamics (quasielastic scattering), the
corresponding S(ω) can be described by a simple Lorentzian:

S(ω) = 1

π

�

(ω − ω0)2 + �2
, (A5)
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where � (� � 0) (half width at half maximum) is the linewidth
of the quasielastic scattering (ω0 = 0). Followed by Eq. (A5),
the P (τ ) should be fitted by the Fourier transform of Eq. (A5):

P (τ ) = P0exp

(
−�τ

�

)
. (A6)

All the P (τ ) in our measurements can be well described
by this exponential decay, as shown in Fig. 8(b). The fitted
energy linewidths � are less than 1 μeV, meaning the signals
are resolution limited at the measured temperatures. The
comparison between S(ω) for resolution limited (� � 1 μeV)
and � = 5 μeV is shown in the inset of Fig. 8(b), as a reference.
The temperature dependence of � is shown in Fig. 2(b) of the
main text, which must have values greater than zero. The large
error bars for the values of � near TN are due to experimental
uncertainties of P (τ ) in Fig. 8(b).

3. Larmor diffraction measurements

We now turn to the neutron Larmor diffraction measure-
ments. Larmor diffraction is a neutron Larmor precession
technique capable of measuring lattice spacing expansion
and spread with a resolution better than 10−5 in terms of
�d/d. It is sensitive to minor change of lattice spacing d

but insensitive to sample mosaicity and not much affected
by slight misalignment [69]. The total precession phase (φtot)
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FIG. 9. Measurement of the �φtot between T = 113 K and T =
118.6 K, by which the relative change of d spacing can be tracked.

dependent polarizations [P (φtot)] can be used to determine
the d spread and the splitting between multiple d spacings
with small differences, such as the peak splitting caused by
the tetragonal-to-orthorhombic structural transitions in iron
pnictides [41].

Figure 7(b) is a schematic of Larmor diffraction. The spin
flippers are tuned to be parallel with the diffracting planes
and the neutron precession directions in L1 and L2 are the
same. Assuming L1 = L2 = L, the total neutron precession
phase is φtot = 2ωLL/v. From the Bragg law |Q| = |G| =
2ki sin θB,|G| = 2π/d, and the neutron velocity v = �ki/m,
the total Larmor phase φtot can be written as

φtot = 2ωLLm sin θB

π�
d. (A7)

Consequently, the variation of the Larmor phase is proportional
to the change of the d spacing (caused by external or thermal
effect), that is

�φtot = φtot
�d

d
. (A8)

For d change induced thermal expansion, the evolution of
P (φtot) at different temperatures and the relative change of the
φtot (�φtot) can be obtained by fitting the intensity modulations
I (φtot,0 + �φ) using Eq. (A4), where the modulations are
measured by scanning xc4 near xc4,0 [Figs. 7(b) and 9]. The
�φtot between different temperatures (or pressures/Qs) can
be used to determine the evolution of the lattice spacings.
To facilitate data analysis, �φtot between two neighboring
conditions should be kept within 2π . Figure 9 is an example of
lattice thermal expansion at Q = (4,0,0) of BaFe1.97Ni0.03As2.
The difference in xc4 (δL) between T = 113 and 118.6 K, δL,
can be converted to lattice expansions according to Eqs. (A7)
and (A8). In present measurements, 1 mm is equivalent to
∼1 × 10−3 in �d/d, with resolution ∼1 × 10−5. Note lattice
expansion measurements are only valid for single d spacing
at one Q. Systems showing coexisting multiple d spacings
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T = 4 K and 121 K with P ≈ 10 MPa. (b) P (φtot) for the (4,0,0)
and (0,4,0) reflections measured at T = 102.4 K with P ≈ 10
MPa. The inset shows the Gaussian distribution of the d spacing.
(c) Temperature dependence of the P (φtot) for the (4,0,0) peak at
P = 0. P (φtot) for the two d spacings shows clear modulation which
can be fitted by Eq. (A10) (solid curves) due to the twinning caused
by the tetragonal-to-orthorhombic structural transition.

around the same Q with small differences between them cannot
be measured by this method.

Besides the lattice expansion measurements, the P (φtot) =
〈cos�φ(φtot)〉 in a wide range of φtot has been demonstrated
to be the Fourier transform of the lattice spacing distribution
[f (�d/d)] [47,69]. For a single-Gaussian distribution of d

with FWHM = εFW , the P (φtot) can be derived as

P (φtot) = P0exp

(
− φ2

totε
2
FW

16ln2

)
, (A9)

where the FWHM represents the magnitude of the d spread. It
is usually expressed in terms of �d/d. The data shown in Fig. 3
of the main text are temperature dependence of the FWHM
(lattice spacing spread). All of our P (φtot) for single d spacing
are well described by this model, resulting in a Gaussian
distribution of the d values. Figure 10 shows the P (φtot) of
BaFe1.97Ni0.03As2 under P ≈ 10 MPa and their fittings by
Eqs. (A9) and (A10). A clear difference between T = 4 K
and T = 121 K in Fig. 10(a) indicates different FWHM of
the d spread. Figure 10(b) compares P (φtot) for the (4,0,0)
and (0,4,0) reflections at T = 102.4 K. The corresponding
FWHMs of the d distributions are also shown as an inset. Their
differences suggest that the d spread along the pressure-applied
orientation is much larger.

Figure 10(c) shows temperature dependence of P (φtot) for
an unpressured BaFe1.97Ni0.03As2 sample. Its evolution at high
temperature (T > 109 K) indicates the broadening of the d

spread. Below 109 K, clear modulations are seen in P (φtot).
This is caused by the peak splitting of the orthorhombic (4,0,0)

and (0,4,0) reflections in a twinned sample. For systems
showing two or more coexisting d spacings around some
Q, their d spacing distribution functions are superposition of
multiple Gaussian distributions. In this case, the interference
between different d spacings will appear and can be used
to identify the specific values and spread of the involved d

spacings.
For the peak splitting (two d spacings) in BaFe1.97Ni0.03As2,

interference between scattered neutrons from d1 and d2 gives
rise to the modulating polarization

P (φtot) = A
√

a2 + (1 − a)2 + 2a(1 − a)cos(φtot�ε), (A10)

where

A = P0exp

(
−φ2

totε
2
FW

16ln2

)
; (A11)

here we assume both d spacings have the same εFW . a and
(1 − a) denote the populations of the d1 and d2;

�ε = d1 − d2

(d1 + d2)/2
(A12)

is the lattice distortion. The definition of �ε is similar to
the orthorhombic lattice distortion δ = (a − b)/(a + b) in iron
pnictides, with �ε = 2δ [5]. The P (φtot) at T = 107.5 and
105.2 K in Fig. 10(c) are well described by Eq. (A10). The
fitted lattice distortions and d spreads are shown in Figs. 3
and 4 of the main text. The resolution in determining �ε here
depends on the range of φtot and the d spread of the sample
since the dips of the polarization are critical for fitting �ε. The
resolution of �ε for two d spacings is 7 × 10−4 in the present
work. Thus the possible distortions at temperatures slightly
lower than Ts = 114 K [such as the 109.5-K data shown in
Fig. 10(c)] in BaFe1.97Ni0.03As2 cannot be distinguished from
the broadening of the d spread.

Figure 11 is P (φtot) for temperatures across the structural
transition of the BaFe2As2 sample. P (φtot) in Fig. 11(a)
is a beating pattern caused by interference between two d

spacings below Ts , similar with that shown in Fig. 10(c).
The corresponding d spacing distributions are shown in
Fig. 11(e). The orthorhombic distortions can be determined
as δ = (d2 − d1)/(d2 + d1). Upon warming the sample to
T = 137 K, a temperature slightly lower than Ts , a more
complicated pattern [Fig. 11(b)] indicates the coexistence of
four d spacings [Fig. 11(f)]. This is consistent with the coex-
isting orthorhombic antiferromagnetic (δ1) and orthorhombic
paramagnetic (δ2) phases revealed by high-resolution x-ray-
diffraction measurements [5]. The four-d spacing model of
P (τ ) can be derived analytically (not shown here) and fits the
data very well. Figures 11(c) and 11(g) are results for T ∼ Ts ,
where the δ2 is indistinguishable and only one broad d spread
can be fitted. Here, the orthorhombic antiferromagnetic phase
(δ1) is about to disappear, suggesting this temperature is near
Ts . For temperature higher than Ts in Figs. 11(d) and 11(h),
only one d spacing is observed, indicating the system enters
into the paramagnetic tetragonal phase. In Figs. 11(a) and
11(b), the magnitude of the lattice distortions determines the
beating periods (overall line shape) and the relative populations
of different d spacings control whether the polarization can
reach zero at dips. In the present study, the overall line shapes
of all P (τ ) are well fitted by specific multiple (2–4) d spacing
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FIG. 11. (a)–(d) Precession phase (φtot) dependent polarizations
across the structural transition for BaFe2As2. The solid green curves
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models. (e)–(h) d spacing distributions in d space. The orthorhombic,
coexisting two different orthorhombic and tetragonal phases can be
determined for T = 136–139 K, respectively.

models [green curves in Figs. 11(a)–11(d)], indicating that the
lattice distortions are well determined.

The orthorhombic lattice distortions for BaFe2As2 and
SrFe1.97Ni0.03As2 obtained from Larmor diffraction measure-
ments of P (φtot) are shown in Fig. 12. These results are
consistent with previous results measured by x-ray diffraction
[5]. The error bars in Figs. 3 and 4 of the main text are fitting
errors of the raw data at different temperatures according to
formulas discussed above.

4. d spread anisotropy between a and b

Our another interesting discovery is the doping dependent d
spread anisotropy under uniaxial pressure. The samples shown
in Fig. 13 exhibit similar temperature dependence of the d

spread between (4,0,0) and (0,4,0), suggesting that the dif-
ference of d spread between a and b is trivial. However, we note
that the FWHM of (0,4,0), along the uniaxial pressure direc-
tion, is much larger than a in underdoped samples [Figs. 13(a)–
13(c)]. This may be attributed to an inhomogeneous distribu-
tion of the pressure induced strain field. However, we find very
small differences in d spread between (4,0,0) and (0,4,0) in
the overdoped BaFe1.88Ni0.12As2 [Fig. 13(d)], suggesting the
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FIG. 12. Temperature-dependent orthorhombic lattice distortions
for BaFe2As2 and SrFe1.97Ni0.03As2. The open green diamond in (a)
marks the temperature range showing four d spacings. The open red
diamonds in (b) show the persistence of the tetragonal phase into the
orthorhombic phase, indicative of a first-order structural transition,
consistent with previous reports. The vertical blue dashed lines mark
the structural transitions.

d spread anisotropy between a and b is nontrivial and may
be associated with antiferromagnetic/structural instability or
even nematic susceptibility in underdoped samples.

5. Lattice distortions and Young’s modulus

The Young’s modulus Y along the b axis (∼C66) can be
estimated by Y = P/δ, where δ is pressure induced lattice
distortion. At ∼250 K, the Y for BaFe2As2, BaFe1.97Ni0.03As2,
and BaFe1.88Ni0.12As2 estimated from our neutron Larmor
diffraction experiments are ∼50, ∼50, and ∼100 GPa, re-
spectively. Compared with the shear modulus C66 obtained
by ultrasound spectroscopy [52], the estimated Y for x = 0
and x = 0.03 are ∼30% larger. These differences are mainly
caused by the errors in our estimation of the applied pressure P

through measuring compressed spring distances and estimated
spring constant [41]. However, they will not affect temperature
dependence of the pressure-induced FHWM of �d/d and its
comparison with other iron pnictides, and thus will not alter
the conclusions of our experiments.

6. Landau theory and effect of magnetism
on nematicity and strain

In order to understand the distinct behavior of the ob-
served lattice distortion in SrFe1.97Ni0.03As2compared to
BaFe1.97Ni0.03As2 [see Fig. 1(c) in the main text], we write
down the Landau free energy incorporating the electronic
nematic order parameter ϕ, coupled magnetoelastically to the
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lattice distortion δ ∝ ε6, as well as to the antiferromagnetic
order parameter M:

F = F0 + T0f [ϕ,δ] + T0f̃ [M,ϕ], (A13)

where

f [ϕ,δ] = a

2

T − T0

T0
ϕ2 + B

4T0
ϕ4 + C66,0

2T0
δ2 − λ

T0
δϕ − Pδ

T0
.

(A14)
Here we chose to normalize the free energy by the Curie-Weiss
temperature T0 associated with the quadratic ϕ2 term (if T0

is negative, it is replaced by |T0|). Treating the electronic
nematic order parameter ϕ as a dimensionless variable, this
has an advantage that all the coefficients in the free energy are

TABLE I. Curie-Weiss fitting parameters of the pressure-induced
lattice distortions in the tetragonal state; see Fig. 1(c) in the main text.

Sample T CW
s (K) T0(K) T CW

s − T0(K)

BaFe2As2 134.9 ± 0.3 51.3 ± 8.7 83.5 ± 8.7
SrFe1.97Ni0.03As2 170.9 ± 1 135.7 ± 6 35.2 ± 6.1

dimensionless (here we choose, without loss of generality, a=
B = 1). The remaining Landau expansion parameters can be
fixed from the experiment. Indeed, it is convenient to express
the external uniaxial stress P in terms of the dimensionless
stress variable σ = P/C66,0. Then, the last three terms in
Eq. (A14) can be written as follows:

λ

|T0|
[(

C66,0

λ

)(
δ2

2
− δσ

)
− δϕ

]
. (A15)

Minimizing the free energy with respect to δ, we find

δ = λ

C66,0
ϕ + σ. (A16)

From the minimization with respect to ϕ, it is easy to obtain

dϕ

dδ
= λ

a(T − T0) + 3Bφ2
(A17)

and now the shear modulus C66 ≡ dP/dδ = d2F/dδ2 be-
comes

C66 = C66,0 − λ
dϕ

dδ
= C66,0 − λ2

a(T − T0) + 3Bφ2
; (A18)

in other words the elastic modulus gets renormalized from
its bare value C66,0 by virtue of the elastonematic coupling
λ. Equivalently, it follows from the above equation that the
inverse nematic susceptibility χ−1

ϕ ≡ d2F/dϕ2|ϕ→0 also gets

renormalized from its bare value χ−1
φ = a(T − T0):

χ̃−1
ϕ = χ−1

φ − λ2

C66,0
= a

(
T − T CW

s

)
, (A19)

where T CW
s = T0 + λ2

aC66,0
is the renormalized Curie-Weiss

temperature. One can now cast Eq. (A18) above the transition
temperature Ts = T CW

s into the form

dδ

dP
≡ 1

C66
= 1

C66,0

T − T0

T − T CW
s

,
(
T > T CW

s

)
, (A20)

which is Eq. (3) in the main text. We now use this Eq. (A20) to
fit the data for the pressure-induced distortion δ(P ) − δ(0) ≈
P (dδ/dP ) [Fig. 1(c) in the main text], extracting the values
of T0 and T CW

s which we quote in Table I for BaFe2As2 and
SrFe1.97Ni0.03As2.

We now turn to the question of the strength of the
elastonematic coupling constant λ. The unknown dimension-
less parameter r = C66,0/λ in Eq. (A16) can be fixed from
the ratio ϕ/δ in zero external stress (σ = 0). Substituting
the typical value of δ ∼ 3 × 10−3 in SrFe1.97Ni0.03As2and
BaFe1.97Ni0.03As2 and choosing the value of the nematic
order parameter ϕ = 1 deep inside the nematic phase for
convenience, we find r ∼ 300. As for the value of λ̃ = λ/|T0|
itself, it can also be fixed from the experiment since λ enters
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in Eq. (A19) to renormalize the Curie-Weiss temperature.

Therefore, one obtains λ̃ = a
(T CW

s −T0)
|T0| r . Plugging in the values

of T CW
s and T0 from our fittings of the lattice distortions

(Table I), we obtain λ̃ ≈ 80 for SrFe1.97Ni0.03As2and λ̃ ≈ 490
for BaFe2As2, in other words the effective electron-lattice cou-
pling is about ∼6 times weaker in SrFe1.97Ni0.03As2compared
to the BaFe2−xTxAs2 compounds. For BaFe1.97Ni0.03As2, the
quality of our data was insufficient to accurately determine
the bare Curie-Weiss temperature T0 (we were only able to
determine T CW

s = 88.5 ± 1.0 K). However, from the esti-
mated T CW

s − T0 ≈ 50 K by the elastic measurements [38],
we can deduce the approximate value of the coupling constant
λ̃ ≈ 390, similar in magnitude to undoped BaFe2As2.

We now turn our attention to the magnetonematic coupling.
On symmetry grounds, nematic order parameter must couple
to M2 (since magnetization breaks time-reversal symmetry,
and ϕ does not). This can be shown explicitly by considering
the magnetization MA,B on the two sublattices composed
of the next-nearest-neighbor sites of the square lattice, in
which case the nematic order parameter couples linearly
to the product (MA · MB) [25,28,36,70]. Note that this
conclusion holds independently of whether the microscopic
origin of nematicity is purely magnetic [25,28,70] or orbital
[31–33,36,71]. The magnetic phase transition itself may be
intrinsically second order, as in BaFe2−xTxAs2 compounds, or
first order, as in SrFe1.97Ni0.03As2, Ba1−x(K,Na)xFe2As2, and
Ca1−xLaxFe2As2. Below we consider both possibilities:

f̃1[M,ϕ] = u

2
(T − TN,0)M2 − v

4
M4 + w

6
M6 − μϕM2,

(A21)

f̃2[M,ϕ] = u

2
(T − TN,0)M2 + v

4
M4 − μϕM2. (A22)

Since we are after the qualitative consequences of the
magnetonematic coupling, the precise values of the Landau
coefficients are not essential (we take u = v = w = 1 and
μ = 0.1 for concreteness).

Having introduced the Landau formalism above, we now
study the effect of the applied external stress P on the
behavior of the lattice distortion. The calculated temperature
dependence of δ(P ) − δ(0) is shown in Fig. 14 for the realistic
strain P = 20 MPa and is shown to depend crucially on the
nature of the magnetic phase transition. Indeed, the only
difference between the two curves is the sign in front of
the quartic M4 terms in Eqs. (A21) and (A22), while all the
other Landau expansion parameters are kept the same (the two
curves are offset horizontally for clarity). Note that for small
P , δ(P ) − δ(0) ≈ (dδ/dP )P is proportional to the nematic
susceptibility, which is expected to diverge at T CW

s according
to Eq. (A20). Both curves in Fig. 14 exhibit an enhanced
nematic susceptibility on approaching T CW

s , as expected. The
main difference is the shape of the curve on approaching
the transition, which has a distinct asymmetric “λ” shape
in the case of the second-order magnetic transition, and
resembles closely the experimentally measured δ(P ) − δ(0)
for BaFe1.97Ni0.03As2 in Fig. 1(c) (see main text). By contrast,
the Néel transition is first order in SrFe1.97Ni0.03As2, and the
experimental behavior in Fig. 1(c) is close to the calculated
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FIG. 14. Change in the lattice distortion as a function of temper-
ature, calculated from the Landau theory assuming either first-order
[Eq. (A21)] or second-order [Eq. (A22)] magnetic phase transition
coupled to the nematic order parameter ϕ. The blue dashed curve is
shifted to the left by �T = 0.2T0 for clarity. These results should be
compared to the neutron data in Fig. 1(c) in the main text.

sharp increase seen in our model (solid line in Fig. 14). There-
fore, the Landau free energy results corroborate our conclusion
that the nature of the magnetic transition is crucial to the
observed temperature dependence of the lattice distortion.

We note in passing that for sufficiently strong coupling
constant μ, the magnetic transition becomes weakly first order
even if the intrinsic free energy has a positive M4 term in
Eq. (A22). This is likely the explanation for the observed
change of the nature of the magnetic transition from weakly
first order in BaFe2As2 to second order upon Co doping [5,7,8].
However for the values of the coupling constants in Fig. 14,
this effect is imperceptible and the main difference between
the two curves is due to the different intrinsic nature of the
magnetic phase transition depending on the sign of the quartic
term in Eqs. (A21) and (A22). We have verified that for the
significantly larger values of the coupling constant [μ � 0.4
in Eq. (A22)], it is indeed possible to obtain the shape similar
to the dashed line in Fig. 14 because the magnetic transition
becomes effectively first order. In either case, our conclusions
remain intact.

7. Interpretation of the resistivity anisotropy

The resistivity anisotropy �ρ = (ρa − ρb)/(ρa + ρb) has
been widely used as a proxy for the electronic nematic order
parameter in the iron pnictides [12,20]. However in some
compounds, in particular in SrFe1.97Ni0.03As2, the resistivity
anisotropy is vanishingly small immediately above TN [see
Fig. 1(b) in the main text], whereas it is much larger in
BaFe2−xTxAs2. This is puzzling because the lattice distortion
is comparable in both cases [Fig. 1(c)] and, according to
Eq. (A16), one expects the lattice distortion δ to be proportional
to the nematic order parameter.

To shed more light on this apparent inconsistency, we have
plotted in Fig. 15 the temperature dependence of the nematic
order parameter ϕ under the uniaxial stress P = 20 MPa.
The two curves correspond to the first- and second-order
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FIG. 15. Calculated temperature dependence of the nematic order
parameter ϕ coupled to either first- or second-order magnetic
phase transition. Note that in both cases, the bare ϕ4 term is
positive, however the nematic transition is rendered first order (solid
curve) when coupled to the first-order magnetic order parameter in
Eq. (A21).

nature of the magnetic transition, respectively, and the Landau
parameters were kept the same in both cases (except for
the sign of the quartic term in Eqs. (A21) and (A22).
Above the transition temperature, T > Ts , the values of ϕ

are predictably small, but importantly, they are identical in the
two cases. In fact, the main difference lies in the temperature
dependence immediately below Ts . From Fig. 15, it would
appear that in this regime, the nematic order parameter should
be smaller for the second-order phase transition, however
this is diametrically opposite from the comparison between
BaFe1.97Ni0.03As2 and SrFe2As2 in Fig. 1(b) (see the main
text), where the magnetic transition in BaFe1.97Ni0.03As2 is
second order, yet resistivity anisotropy is much larger. This
qualitative observation can be made sharper by considering
Eq. (A16), where the coupling constant λ is estimated from
experiment to be a factor of ∼5 larger in BaFe1.97Ni0.03As2and
BaFe2As2 compared to SrFe1.97Ni0.03As2, whereas the elastic

modulus C66,0 ≈ 50 GPa is similar in all three materials. Then,
BaFe2As2 is expected to have at least a factor of 5 larger
lattice distortion compared to SrFe1.97Ni0.03As2, assuming
that ϕ is the same in both materials. If one now equates
the resistivity anisotropy with the nematic order parameter
ϕ, as has commonly been done in the literature [12,20], then
one is forced to conclude that ϕ must be about four times
larger in BaFe2As2 due to the larger resistivity anisotropy
[see Fig. 1(b)]. Taken together, one would expect the lattice
distortion δ to be a factor of ∼20 larger in BaFe2As2 and in
BaFe1.97Ni0.03As2 compared to SrFe1.97Ni0.03As2 (a factor of
4 due to larger resistivity anisotropy, times a factor of 5 due
to larger λ). And yet this clearly contradicts the experimental
evidence in Fig. 1(c), according to which the lattice distortion
is almost the same in all three materials.

One possible way out of this dilemma is that the Landau
theory may not be applicable to describe the nematicity in
the pnictides. However, given the excellent semiquantitative
agreement that Landau theory provides for the lattice distortion
(Fig. 14 above) and its well documented success describing the
elastic shear modulus measurements [38], such a conclusion
is perhaps not well justified. Rather, a much more plausible
conclusion is that resistivity anisotropy is a poor substitute
for the nematic order parameter. While it is plausible that the
two quantities are proportional to each other, as follows from
the nematic susceptibility measurements [20], the coefficient
of proportionality need not be constant and can have a strong
temperature dependence (and likely material dependence), as
suggested recently by Tanatar et al. in the recent study on
FeSe [61]. This material displays a nonmonotonic temperature
dependence of the resistivity anisotropy with a peak below
Ts , qualitatively similar to BaFe2As2 . Further theoretical and
experimental studies are necessary to elucidate the precise
relationship of the resistivity anisotropy and the nematic
order parameter in the iron pnictides and chalcogenides.
Direct microscopic measurements of the nematic order pa-
rameter, for instance using the angle-resolved photoemission
spectroscopy (ARPES) to probe the orbital splitting, com-
bined with the uniaxial pressure measurements, would be
desirable.
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