Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals

Liangzi Deng,a,b,1 Trevor Bontke,a,b, Rabin Dahal,a,b, Yu Xie,c,d, Bin Gao,e, Xue Li,c,d, Ketao Yin,c, Melissa Gooch,a,b, Donald Rolston,a,b, Tong Chen,e, Zheng Wu,a,b, Yanming Ma,c,d, Pengcheng Dai,e, and Ching-Wu Chu*a,b,d,e

*Department of Physics, University of Houston, Houston, TX 77204; Texas Center for Superconductivity, University of Houston, Houston, TX 77204; Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; Department of Physics and Astronomy, Rice University, Houston, TX 77005; School of Physics and Electronic Engineering, Linyi University, Linyi 276005, China; and Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Contributed by Ching-Wu Chu, June 10, 2021 (sent for review May 13, 2021; reviewed by Qiang Li and James S. Schilling)

To raise the superconducting-transition temperature (Tc) has been the driving force for the long-sustained effort in superconductivity research. Recent progress in hydrides with TcS up to 287 K under pressure of 267 GPa has heralded a new era of room temperature superconductivity (RTS) with immense technological promise. Indeed, RTS will lift the temperature barrier for the ubiquitous application of superconductivity. Unfortunately, formidable pressure is required to attain such high TcS. The most effective relief to this impasse is to remove the pressure needed while retaining the pressure-induced Tc without pressure. Here, we show such a possibility in the pure and doped high-temperature superconductor (HTS) FeSe by retaining, at ambient pressure via pressure quenching (PQ), its Tc up to 37 K (quadrupling that of a pristine FeSe at ambient) and other pressure-induced phases. We have also observed that some phases remain stable without pressure at up to 300 K and for at least 7 d. The observations are in qualitative agreement with our ab initio simulations using the solid-state nudged elastic band (SSNEDB) method. We strongly believe that the PQ technique developed here can be adapted to the RTS hydrides and other materials of value with minimal effort.

FeSe | high-temperature superconductivity | high pressure | pressure quench | retention

The vast impact of room temperature superconductivity (RTS) on humanity is limited only by the imagination. Recent reports show that RTS is indeed within reach, although only under high pressure (HP). For instance, superconducting-transition temperatures (TcS) above 200 K have been reported in unstable molecular solids (hydrides), i.e., up to 203 K in H2S under 155 GPa (1, 2), up to 260 K in LaH12 under 190 GPa (3–5), up to 287 K in C–H–S under 267 GPa (6), and potentially well above room temperature in La–H under 158 GPa after thermal cycling (7); earlier, Tc up to 164 K was reported in the stable cuprate high-temperature superconductor (HTS) HgBa2Ca2Cu3O8+δ under 31 GPa (8, 9). While record-high TcS reported to date fall into practical cryoapplications or for scientific inquiries. The challenge is not restricted to further increasing the superconducting transition temperature under extreme conditions and must now include concentrated efforts to lower, and better yet remove, the applied pressure required. This work addresses directly such a challenge by demonstrating our successful retention of pressure-enhanced and/or -induced superconducting phases and/or semiconducting phases without pressure in single crystals of superconducting FeSe and non-superconducting Cu-doped FeSe. The pressure-quenching technique developed in this work offers the possibility of future practical application and the unraveling of RTS recently detected in hydrides but only under high pressures.

Significance

As room temperature superconductivity (RTS) has been reported recently in hydrides at megabar pressures, the grand challenge in superconductivity research and development is no longer restricted to further increasing the superconducting transition temperature under extreme conditions and must now include concentrated efforts to lower, and better yet remove, the applied pressure required. This work addresses directly such a challenge by demonstrating our successful retention of pressure-enhanced and/or -induced superconducting phases and/or semiconducting phases without pressure in single crystals of superconducting FeSe and non-superconducting Cu-doped FeSe. The pressure-quenching technique developed in this work offers the possibility of future practical application and the unraveling of RTS recently detected in hydrides but only under high pressures.

Reviewers: Q.L., Brookhaven National Laboratory; and J.S.S., Washington University in St. Louis.

The authors declare no competing interest.

Published under the PNAS license.

See online for related content such as Commentaries.

1To whom correspondence may be addressed. Email: cwchu@uh.edu or ldeng2@central.uh.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/ doi:10.1073/pnas.2108938118/-/DCSupplemental.

Published July 7, 2021.

PNAS 2021 Vol. 118 No. 28 e2108938118

https://doi.org/10.1073/pnas.2108938118 | 1 of 6

Downloaded at FONDREN LIBRARY MS 235 on July 7, 2021
for at least 7 d. Our observations have thus demonstrated that the pressure-enhanced or -induced high-Tc phases in HTSs can be retained at ambient pressure via PQ at a chosen PO and TQ, suggesting a possible realistic path to the ubiquitous applications of the recently reported RTS.

Results and Discussion

In the present study, we have chosen single crystals of the SC FeSe (18) and the non-SC Cu-doped FeSe (19) as model HTSs due to their simple structure and chemistry, as well as their large Tc variation under pressure (20, 21) and their important role in unraveling HTS (22–24). Furthermore, the iron-chalcogenide superconductors have attracted broad interest for applications from high-field magnets to quantum information science. For example, the Majorana zero modes reported in iron-chalcogenide superconductors can potentially be used for building topological qubits (25). The normalized resistance of FeSe and Cu-doped FeSe at 300 K as a function of pressure [R(PO)/R(0)] during pressure increasing and decreasing is displayed in SI Appendix, Fig. S1, which shows a clear hysteresis, suggesting that PQ may be possible since thermal hysteresis may provide the energy barrier (Fig. L4) to retain the HP-induced phases. Preliminary boundaries of the orthorhombic (O)–tetragonal (T)–hexagonal (H) phase transitions of FeSe previously reported (20, 26) are also shown for later discussion. The T–O transition is suppressed from ~90 K at ambient pressure to below 4.2 K at ~2 GPa, as indicated by the dashed line at Left in the same figure. At ambient pressure, R(T) of FeSe shows a sharp SC transition at 9.3 K (SI Appendix, Fig. S2). The transition broadens under pressure, so the Tc(P) cited hereafter refers to the onset temperature as defined in SI Appendix, Fig. S2. Fig. 2 (blue squares) displays the Tc variation of FeSe with PA; it increases slowly from ~9 K at ambient pressure to ~15 K below 1.9 GPa; suddenly jumps to ~32 K at 1.9 GPa, coinciding with the O–T transition; continues to rise with a broad peak at ~40 K around 4 GPa; but finally becomes insulating above ~8 GPa as the H phase sets in.

To retain at ambient pressure the above pressure-enhanced Tc of FeSe, we have developed a technique to PQ the sample at different POs and TQs by rapidly removing the PA, under which a desired Tc has been first attained, from the sample in the diamond anvil cell, as shown in Fig. 3 A–F. The temperature-dependent resistance of FeSe at different POs normalized to those at 70 K, R(T,PA)/R(70 K,PA), near the superconducting transitions are exemplified in Fig. 3 A and B for PO = 4.15 GPa (close to maximum Tc ~40 K in the tetragonal phase), and 11.27 GPa (non-SC in the hexagonal phase), respectively. By following different thermal and pressure protocols as specified in the captions, they demonstrate the generation or destruction of the HP SC phase at PA (blue), the retention at ambient pressure of the PQd phase (4.2 K) HP SC phase (red), and the thermal annealing effect up to 300 K on the PQd (4.2 K) HP phase to ascertain its retention (orange), all carried out sequentially.

As is evident from Fig. 3A, the Tc of the FeSe sample has been enhanced from ~9 K at ambient pressure to ~39 K under 4.15 GPa (blue). After PQ at 4.15 GPa and 4.2 K, a SC transition with a Tc ~37 K is detected at ambient pressure (red). To show that the 37 K–Tc is indeed attained by PQ, we heated the sample up to 300 K before cooling it back down to 4.2 K and found that the PQd SC transition at 37 K is annealed away and replaced by its pre-PQed one, although at a higher Tc ~20 K (orange) rather than ~9 K, presumably because of an unknown irreversible residual strain effect in the sample (27). Fig. 3B shows that FeSe at 11.27 GPa displays a non-SC transition as expected (blue), as does the PQd sample (red). However, the sample regains its SC transition with a Tc ~20 K after the PQd phase is annealed off after being heated up to 300 K (orange). To demonstrate the metastability of the PQd SC phases, the SC transition PQd at PO = 4.13 GPa and TQ = 4.2 K upon sequential thermal cycling to higher temperatures is shown in Fig. 3C. The transition smoothly shifts downward and becomes sharper due to possible reduced fluctuations at lower temperature and/or the possible improved strain condition of the sample upon thermal annealing at higher temperatures. The sudden downward shift in the overall SC transition by ~10 K after heating up to ~200 K implies that the PQd phase transforms to the pre-PQed FeSe phase (with strain) and is stable up to 200 K. All Tcs of the PQd phases examined at different POs and TQ = 4.2 K are summarized in Fig. 2 (red circles).
As mentioned earlier, the PQed phase is metastable, and thus should depend on P_A and T_Q and detailed electronic and phonon energy spectra of the materials examined. We have therefore repeated the PQ experiments on FeSe by raising only the T_Q to 77 K (Fig. 3 D–F). Fig. 3D shows that the T_C of FeSe before PQ has been enhanced to ~ 37 K at 5.22 GPa (blue); upon PQ, a $T_C \sim 24$ K is retained at ambient pressure (green) in contrast to the 37 K when $T_Q = 4.2$ K, as shown in Fig. 3A; and the transition returns to ~ 14 K on cooling after warming to 300 K, showing that the 24 K transition is associated with the PQed phase. Fig. 3E shows that FeSe becomes insulating at 11.12 GPa (blue); the phase is retained at ambient pressure by PQ (green); and the PQed phase remains after heating to 300 K, suggesting that this PQed non-SC phase is stable up to 300 K. The effect of systematic thermal cycling with increasing temperatures on the PQed phase at $P_A = 5.22$ GPa and $T_Q = 77$ K is shown in Fig. 3F. All T_S of the PQ phases examined at different P_A and $T_Q = 77$ K are also summarized in Fig. 2 (green diamonds). They are all lower than those quenched at various P_Q and $T_Q = 4.2$ K in general agreement with the competition between the instability of the SC state and thermal excitation.

To demonstrate that the retained SC state after PQ in pure FeSe at ambient pressure is not associated with the superconductivity of the pristine FeSe at ambient pressure, we have repeated the PQ experiment on two non-SC Cu-doped FeSe samples (Fe$_{1.01-x}$Cu$_x$Se with $x = 0.03$ and 0.035; the $x = 0.03$ sample is discussed below unless otherwise noted). As shown in SI Appendix, Fig. S2B, Cu-doped FeSe is not SC above 1.2 K below 1.2 GPa (19, 21). Under pressure (Fig. 4, blue squares), it abruptly becomes SC with a $T_C \sim 20$ K at 3.11 GPa (Inset, SI Appendix, Fig. S2B); T_C continues to increase with increasing P_A and peaks at ~ 27 K under 6.23 GPa; and at 9.65 GPa, only trace superconductivity was detected down to 1.2 K. Following the same protocols as those for the pure FeSe, we performed PQ on Cu-doped FeSe at different P_A and T_Qs, as exemplified by Fig. 5 A–F. Two examples of $R(T,P_A)/R(50$ K, $P_A)$ for Cu-doped FeSe are given in Fig. 5A for $P_A = 6.32$ GPa and 6.16 GPa (close to maximum $T_C \sim 27$ K) PQed at $T_Q = 4.2$ K and 77 K, respectively; and in Fig. 5B for 9.65 GPa (non-SC) PQed at $T_Q = 77$ K. As is evident from the $R(T,P_A)/R(50$ K, $P_A)$ in Fig. 5A, $P_A \sim 6$ GPa has induced a SC state in the non-SC Cu-doped FeSe with a $T_C \sim 26$ K (navy and blue); this SC state has been PQed at $P_A = 6.16$ GPa and $T_Q = 4.2$ K (red) and at $P_A = 6.32$ GPa and $T_Q = 77$ K (green), respectively. Disappearance of the SC phase after thermal cycling up to 300 K (Fig. 5A, orange and brown) demonstrates that the SC states induced by $P_A \sim 6$ GPa have been retained at ambient pressure with $T_C \sim 26$ K via PQ at 4.2 and 77 K, respectively. As shown in Fig. 5B, $P_A = 9.65$ GPa turns the sample to an insulating state (blue); upon PQ at $T_Q = 77$ K, it remains insulating (green); and the sample stays in the non-SC state after thermal cycling to 300 K (orange), suggesting that the insulating state PQed at 9.65 GPa and 77 K is stable up to 300 K. The thermal stability ranges of the PQed SC states at $P_A = 6.08$ GPa and $T_Q = 4.2$ K and at $P_A = 5.95$ GPa and $T_Q = 77$ K are shown in Fig. 5C and D, respectively. They show that the state PQed at a lower T_Q possesses a wider thermal stability range. The anomalies observed in $R(T)$ upon warming right after PQ (Fig. 5E) correlate qualitatively with the thermal stability of the PQed phases (Fig. 5 C and D). Fig. 5F demonstrates that the PQed SC phase at $P_A = 6.67$ GPa and $T_Q = 77$ K remains unchanged for at least 7 d after thermal cycling between 50 and 4.2 K. All PQed T_S of Cu-doped FeSe are summarized in Fig. 4. Unlike in their pristine unpressurized state, the two different Cu-doped FeSe samples both behave similarly to FeSe under pressures, but with
their phase boundaries shifted to higher values, as displayed in Figs. 2 and 4 and SI Appendix, Fig. S3, due to the Cu-doping effect. While PQ works for both pure and Cu-doped FeSe in retaining without pressure the pressure-enhanced or -induced SC states, the effect of T_Q on the T_c of the PQed SC phase for Cu-doped FeSe is smaller than that for FeSe, due to the possible change in the electronic structure resulting from doping. This suggests that doping can help adjust the PQ parameters.

To gain a better understanding of the PQ effects on FeSe, we performed ab initio simulations to evaluate the phase transition energy barriers between different phases via solid-state nudged elastic band (SSNEB) (28). As shown in Fig. 6A and B, the phase transition energy barrier between the orthorhombic (29) and tetragonal (30) phases is small. For instance, the energy barrier is 3 meV/atom at 6 GPa, which is lower than the energy barrier of 6 meV/atom at 0 GPa, suggesting that the transition temperature between these two phases at HP should be lower than that at ambient pressure, in agreement with the experimental observations. Nevertheless, the small energy barrier between those two structures ensures that FeSe could preserve the structure phase from one transfer to the other when PQed from above 2 GPa to ambient pressure at low temperatures, as well as the superconductivity. On the other hand, the phase transition energy barrier from the hexagonal (31) to the tetragonal phase is significantly larger, about 0.189 and 0.193 eV/atom at 8 and 11 GPa, respectively (Fig. 6C and D). We also noticed that the tetragonal phase is energetically more favorable than the hexagonal phase at simulated pressures. The phase transition between the tetragonal and hexagonal phases will occur at 15 GPa based on our simulation, in agreement with previous calculations (32). The estimated energy barriers are comparable to that between graphite and cubic diamond, around 0.21 eV/atom at 10 GPa (33), suggesting that the hexagonal phase could be preserved during the quenching process once it is formed, as we observed in our experiments. The energy barrier is high enough to prevent

Fig. 4. T_c as a function of P_A or P_Q for single-crystalline Cu-doped FeSe. T_c at P_A (blue squares); and at T_c (green diamonds) and at $T_Q = 77$ K (green diamonds), respectively.

Fig. 5. Pressure quenching (PQ) the single-crystalline Cu-doped FeSe. R(T)/R(50 K) under P_A and at ambient pressure after PQ, and testing the stability of the PQed phases: (A) at $P_A = 6.16$ GPa (navy) and 6.32 GPa (blue), and at ambient pressure after PQ at 6.16 GPa and 77 K (green) and at 6.32 GPa and 4.2 K (red), and on cooling after warming to 300 K (orange and brown); (B) at $P_A = 9.65$ GPa (blue), at ambient pressure after PQ at 9.65 GPa and 77 K (green), and on cooling after warming to 300 K (orange); (C) at ambient pressure after PQ at 6.08 GPa and 4.2 K, warmed to 25 K and sequentially cooled from different temperatures between 25 and 220 K as shown; (D) at ambient pressure after PQ at 5.95 GPa and 77 K sequentially cooled from different temperatures between 77 and 220 K as shown; (E) R(T) at ambient pressure for the same sample subjected to different PQ conditions: $P_Q = 6.31$ GPa and $T_Q = 77$ K (green), and $P_Q = 6.51$ GPa and $T_Q = 120$ K (purple); and (F) repeated thermal cycling at ambient pressure from 50 K for the sample PQed at 6.67 GPa and 77 K.

https://doi.org/10.1073/pnas.2108938118
We have demonstrated that the pressure-enhanced or -induced Conclusions were thoroughly mixed and loaded into a quartz tube. AlCl₃ (99%; Alfa Aesar) (99.9%; Alfa Aesar), Cu (99.9%; Alfa Aesar), and Se (99.5%; Alfa Aesar) powders grown using the chemical vapor transport method (34). Stoichiometric Fe Tetra - Ortho @ 6 GPa

Fig. 3

The energy barrier was calculated through the SSNEB method in which seven images were used. The green and brown spheres represent elemental Se and Fe, respectively. Insets show the side views of corresponding structures including the initial state (IS), the transition state (TS), and the final state (FS) along the c axis. The energy barrier was calculated through the SSNEB method in which seven images were used. The arrows show the transition state that is the image with the highest energy and the estimated energy barrier. The green and brown spheres represent elemental Se and Fe, respectively.

Figure 6. Energy barrier between different phases of FeSe. Calculated energy barrier from (A) the tetragonal phase to the orthorhombic phase at 6 GPa and (B) the orthorhombic phase to the tetragonal phase at 0 GPa. Calculated energy barrier from the hexagonal phase to the tetragonal phase at (C) 8 GPa and (D) 11 GPa. Insets show the side views of corresponding structures including the initial state (IS), the transition state (TS), and the final state (FS) along the c axis. The energy barrier was calculated through the SSNEB method in which seven images were used. The arrows show the transition state that is the image with the highest energy and the estimated energy barrier. The green and brown spheres represent elemental Se and Fe, respectively.

FeSe returning to the orthorhombic phase from the hexagonal phase at ambient pressure and 300 K, which is consistent with our experiments at Pᵥ = 11.12 GPa and Tᵥ = 77 K shown in Fig. 3E.

Conclusions

We have demonstrated that the pressure-enhanced or -induced semiconducting phases with high Tᵥ and the pressure-induced semiconducting phases in FeSe and Cu-doped FeSe can be stabilized without pressure by PQ at chosen pressures and temperatures. These PQed phases have been shown to be stable at up to 300 K and for up to at least 7 d depending on the quenching conditions. The observations raise the hope that the recently reported RTS semiconducting phases in FeSe and Cu-doped FeSe can be stabilized without pressure, making possible the ubiquitous applications of RTS envisioned.

Materials and Methods

Sample Preparation. Single crystals of Fe₁₀₀₋ₓCuₓSe (x = 0, 0.03, and 0.035) were grown using the chemical vapor transport method (34). Stoichiometric Fe (99.9%; Alfa Aesar), Cu (99.9%; Alfa Aesar), and Se (99.5%; Alfa Aesar) powders were thoroughly mixed and loaded into a quartz tube. AlCl₃ (99%; Alfa Aesar) and KCl (99%; Alfa Aesar) powders were added as the transport agents. After the evacuated quartz tube was sealed, it was placed into a two-zone tube furnace, in which the temperatures of the hot and cold positions were maintained at 420 and 330 °C, respectively. After 20 d, single crystals with an average size of 3 × 3 × 0.1 mm³ were grown around the edge of the quartz tube’s cold zone. The electron–ion interactions were represented by means of the all-electron projector augmented wave method (39), where 3d⁶⁴s⁶ and 4s⁴p⁴ are treated as the valence electrons for Fe and Se, respectively. We used the Dudaev implementation (40) with on-site coulomb interaction U = 5.0 eV and on-site interaction J = 0.6 eV (41) to treat the localized 3d electron states. The Perdew–Burke–Ernzerhof functional in the generalized gradient approximation (GGA) was used to describe the exchange-correlation potential (42, 43). The plane-wave energy cutoff of 400 eV and a dense k-point grid of spacing 2π/3 Å⁻¹ in the Monkhorst–Pack scheme were used to sample the Brillouin zone. Structural relaxations were performed with forces converged to less than 0.05 eV Å⁻¹. To determine the energy barriers, we used the SNSEB (28) implemented in VASP. The NEB path was first constructed by linear interpolation of the atomic coordinates and then relaxed until the forces on all atoms were <0.05 eV Å⁻¹. Seven images were simulated between the initial and final states.

Data Availability. All study data are included in the article and/or supporting information.

ACKNOWLEDGMENTS. We thank Prof. L. L. Sun, C. Huang, and J. Guo at the Institute of Physics, Chinese Academy of Sciences, for discussions. The work performed at the Texas Center of Superconductivity at the University of Houston is supported by the US Air Force Office of Scientific Research Grants FA9550-15-1-0236 and FA9550-20-1-0068, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston. The FeSe and Cu-doped FeSe single-crystal growth work at Rice University is supported by the US Department of Energy, Basic Energy Sciences, under Contract DE-SC0012311 (P.D.).

Deng et al. Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals

PNAS | 5 of 6

https://doi.org/10.1073/pnas.2108938118
9. L. Gao et al., Superconductivity up to 164 K in HgBa22Ca1−mCu2m+2O8−n (m = 1, 2, and 3) under quasi-hydrostatic pressures. Phys. Rev. B Condens. Matter 50, 4260–4263 (1994).