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Abstract 

A straightforward method is presented for calculating 
the angle settings of a five-circle diffractometer used 
in surface diffraction experiments at synchrotron 
sources. Unlike the conventional four-circle unit, the 
five-circle diffractometer considered herb allows 
detector motion perpendicular to the vertical scatter- 
ing plane. The calculation method described here 
differs from previous ones for other diffractometers by 
resolving both the vector G to be accessed in the 
sample's reciprocal space and the wave-vector transfer 
Q into components parallel and perpendicular to a 
surface of interest. These vector components of G are 
a convenient means of describing the sample's initial 
orientation in the laboratory coordinate system. The 
corresponding components of Q allow two constraints 
on the diffraction condition to be simply expressed in 
the laboratory frame used throughout the calcula- 
tions. One constraint is considered from each of the 
two sets: (1) fixing the incident or exit angle of the 
X-ray beam with respect to the surface of interest; and 
(2) fixing the angle that the exit beam makes with the 
vertical scattering plane or requiring either the 
diffraction rod of interest or the normal to the cut 
surface of the crystal to remain in the horizontal plane. 
This method of calculating the angle settings can also 
be applied to other five-circle diffractometers as well 
as to four-circle diffractometers. 

1. Introduction 

Over the past decade, X-ray diffraction using 
synchrotron radiation has developed rapidly as a 
technique for characterizing the structures of surfaces, 
interfaces and adsorbed films. As discussed in recent 
reviews (Feidenhans'l, 1989; Robinson, 1991), the 
technique offers the advantage of kinematic analysis 
of the diffracted intensities while providing exception- 
ally high resolution in reciprocal space and sufficient 
sensitivity to probe a single layer of atoms. 

The application of synchrotron X-ray diffraction to 
surface-structure studies has made new demands on 
both sample environments and diffractometers. 
Ultra-high-vacuum (UHV) chambers may be required 
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for preparing and maintaining the surface of interest 
during the X-ray experiment. The need to rotate the 
sample under UHV conditions and to have various 
auxiliary surface-analytical probes and sample- 
preparation facilities near the X-ray scattering 
position has led to a variety of chamber designs, as 
reviewed by Feidenhans'l (1989). In some cases, it has 
been necessary to alter the conventional four-circle 
X-ray diffractometer in use at many synchrotron 
beam lines in order to accommodate these chambers. 
Two examples of such modifications are the 'z-axis' 
(Brennan & Eisenberger, 1984) and five-circle (Vlieg, 
Van't Ent, De Jongh, Neerings & Van der Veen, 1987) 
diffractometers. 

Another motive for modifying the conventional 
four-circle diffractometer for use in surface-diffraction 
experiments at synchrotrons is that it may be desirable 
to impose more than one constraint on the scattering 
geometry. With a four-circle instrument, onlv one 
constraint can be imposed because two of the sample's 
three rotational degrees of freedom are needed to 
satisfy the diffraction condition. The one additional 
rotational degree of freedom of the sample is usually 
used to fix the incident or exit angle of the X-ray beam 
with respect to the surface of interest (or to require 
the two angles to be equal). However, there are other 
constraints that might be useful in surface diffraction 
experiments, such as confining a diffraction rod to the 
horizontal plane in which the divergence of the 
incident beam is maximum. This allows one to utilize 
the finite instrumental resolution more effectively. An 
additional constraint of this type can be satisfied by 
introducing another degree of freedom into the 
diffractometer design, such as the table motion of the 
five-circle instrument. 

In this paper, we consider a five-circle diffractom- 
eter similar to that treated by Vlieg, Van't Ent et al. 
(1987). In our case, the four-circle diffractometer is 
modified by mounting the detector on a rotary table 
that moves on a linear drive perpendicular to the 
vertical scattering plane, as shown in Fig. 1. In their 
case, the entire four-circle diffractometer is mounted 
on a table, effectively providing out-of-plane motion 
of the incident beam instead of the detector. Thus, the 
two five-circle instruments differ only in the direction 

Journal of Applied Crystallography 
ISSN 0021-8898 © 1993 



698 ANGLE CALCULATIONS FOR A FIVE-CIRCLE DIFFRACTOMETER 

traversed by the photons. To distinguish between 
them, we will refer to ours as the 'rotating-detector' 
five-circle diffractometer and theirs as the 'rotating- 
table' five-circle diffractometer. 

Our five-circle diffractometer was designed for use 
with an UHV chamber constructed for the investi- 
gation of physisorbed and other weakly bound films 
on single-crystal substrates (Dennison, Wang, Dai, 
Angot, Taub & Ehrlich, 1992). The chamber is 
mounted on a conventional four-circle Huber 5020 
diffractometer at the MATRIX (Midwest Analytical 
Team for Research Instrumentation of X-rays) beam 
line X18A at the National Synchrotron Light Source 
(NSLS) at Brookhaven National Laboratory. Owing 
to the size and configuration of the chamber, the 
region of reciprocal space accessible with the 
four-circle diffractometer is limited; in particular, it is 
impossible to perform specular reflectivity scans. The 
rotating-detector five-circle diffractometer addresses 
these shortcomings and allows diffraction scans under 
more than one constraint. 

Here, we present calculations of the angle settings 
of the five-circle diffractometer when two scattering 
constraints of interest in surface experiments are 
imposed on the diffraction condition. By the 
diffraction condition, we refer to the rotation of a 
reciprocal-lattice vector G of a sample by motion of 
the q~, X and 09 circles of the diffractometer (see Fig. 
1) so that G coincides with the wave-vector transfer 
Q = K : -  Ki, where the incident wave vector Ki is 
fixed and the final wave vector K: is defined by the 
detector angles 6 and 20' (e.g. Warren, 1969). Note 
that G need not be a reciprocal-lattice vector of a bulk 
sample. It may, for example, be a point on a diffraction 
rod associated with the surface of interest. The two 
additional constraints must be imposed on the 
diffraction condition in order to determine uniquely 
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Fig. 1. The schematic diagram of a rotating-detector five-circle 
diffractometer when all the angle settings are zero. Arrows 
indicate the positive sense of rotation. 

the instrument's five angle settings. Such calculations 
are straightforward but, to our knowledge, have not 
yet been done for the rotating-detector five-circle 
diffractometer. 

Busing & Levy (1967) described a general method 
to calculate angle settings for three- and four-circle 
diffractometers. Their method was later adapted to 
surface diffraction scans in which the incident and exit 
angles that the X-ray beam makes with the surface of 
interest are controlled. Vlieg, Van der Veen, 
Macdonald & Miller (1987) treated this problem for 
the rotating-table five-circle diffractometer and 
Mochrie (1988) treated it for the conventional four- 
circle diffractometer. Earlier, Bloch (1985) derived 
an analogous scheme to operate a 'z-axis' instru- 
ment under the constraint of a fixed incident angle. 

Because only two circles are required to rotate G 
into the direction of Q in the absence of constraints, 
there is an extra degree of rotational freedom with a 
four-circle diffractometer that allows this to be done 
in an unlimited number of ways. Busing & Levy (1967) 
chose to express this extra degree of freedom in terms 
of q/, the angle of rotation of the sample about Q. In 
their subsequent calculations, Vlieg, Van der Veen, 
Macdonald & Miller (1987) and Mochrie (1988) used 
a constraint on the incident or exit angle of the X-ray 
beam to determine Ip uniquely. 

Our approach differs from earlier ones in that we 
resolve the vectors G and Q into components parallel 
and perpendicular to a surface of interest. These 
vector components of G are a convenient means of 
describing the sample's initial orientation in the 
laboratory coordinate system. More importantly, the 
corresponding components of Q allow the constraints 
on the diffraction condition to be simply expressed in 
the laboratory coordinate system that is used 
throughout the calculations. This eliminates cumber- 
some transformations between coordinate systems 
fixed to each rotation axis of the diffractometer as in 
the previous angle-setting calculations based on the 
approach of Busing & Levy (1967). 

The remainder of the paper is organized as follows. 
We begin §2 by defining the laboratory coordinate 
system and expressing the vectors Ki, K: and Q in it. 
Then, we distinguish between a sample's cut surface 
and a crystallographic plane of interest from which it 
may be slightly misaligned, define the components of 
G and Q parallel and perpendicular to this surface 
and plane and use these components to reformulate 
the angle-setting problem in §3. In §4, we calculate the 
angle settings of the rotating-detector five-circle 
diffractometer, assuming the components of G and Q 
parallel and perpendicular to the cut surface are 
known. §5 is concerned with calculating Q and its 
components parallel and perpendicular to the cut 
surface from various constraints of interest in surface 
diffraction experiments. In §6, we describe the 
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procedure for determining both the orientation of the 
sample's cut surface and its crystallographic axes. 
Finally, application of the method to angle-setting 
calculations for four-circle and rotating-table five- 
circle diffractometers is discussed briefly in §7. 

2. Definition of the laboratory coordinate system 

As shown in Fig. 1, we define a right-handed Cartesian 
coordinate system fixed in the laboratory such that 
the positive x axis is along the direction of the 
horizontal incident beam. The origin is at the center 
of the diffractometer where the sample is located. Note 
that our assignment of axes differs from that of Busing 
& Levy (1967) in their Fig. l(b). At 09 = 0, the Z circle 
lies in the yz plane so that it is perpendicular to the 
incident beam. In the four-circle diffractometer, the 
detector moves in the vertical xy  plane, making an 
angle 20 (not shown in Fig. 1) with the incident beam. 
This avoids a near-zero polarization factor as the 
scattering angle 20 approaches 90 ° . 

In the rotating-detector five-circle diffractometer, 
the detector is mounted on a rotary table, which 
moves on a linear drive fixed to the detector arm and 
parallel to the z axis of the laboratory system. The 
position of the detector arm is specified by the angle 
20' to distinguish it from 20, which is the angle 
between K/and  K:. As shown in Fig. 2, 6 is the angle 
between K: and its projection onto the xy  plane. 
When 6 and 20' are both set to zero, the detector is 
in line with the incident beam. Arrows in Fig. 1 
indicate the positive sense of rotation for each circle 
and of translation for the linear drive. 

The need for the rotating-detector five-circle 
diffractometer in our experiments can now be 
explained more clearly. To perform specular reflection 
measurements with a four-circle diffractometer, the 
surface normal must be driven into the xy  plane. This 
requires a 90 ° rotation of the • circle, which is 
impossible with our UHV chamber mounted on the 
diffractometer. Moreover, the problem cannot be 

/ 
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Fig. 2. The relation of K: to the angles 20' and 6 in the laboratory 
coordinate system. Arrows indicate the positive sense of rotation. 
Detector is parallel to the direction of K:. 

solved by use of a table to rotate the entire 
diffractometer about the y axis as with the five-circle 
diffractometer of Vlieg, Van der Veen et al. (1987), 
because our chamber does not allow sufficient range 
in the negative q~ direction (Dennison et al., 19921. 
However, by allowing the detector to move out of the 
xy  plane, specular-reflection measurements are feas- 
ible, as is access to larger values of Q.~ in 
nonspecular scans. In §4, it is shown how this 
diffractometer also allows a second constraint to be 
imposed on the scattering geometry. 

In the calculations below, it will be necessary to 
express the wave-vector transfer Q in the laboratory 
coordinate system. As shown in Fig. 2, the incident 
and diffracted wave vectors in the laboratory 
coordinate system are given by 

and 

Therefore, 

.i:kEi I 
K: 

cos 6 cos 20'] 
= k |  cos 6 sin 20' | .  

L sin 6 _] 

 cos cos20,1 r0xl 
Q = K : - K i = k |  cos b sin 20' . = Qr , (1) 

[_ sin6 [_Qz.J 

where k = (2n/2) is the magnitude of the wave vector 
and 2 is the wavelength of the incidcnt beam. Using 
Q 2 =  Q2 + Q] + Q] and (1), we have the following 
relation between the angles 20' and 6: 

Q2 = 2k2(1 _ cos 20' cos 6). (2) 

Note that cos 20' cos 6 = cos 20, where 20 is the 
previously defined angle between Ki and K:. 

3. Reformulation of the problem 

Often there is more than one surface of interest in a 
diffraction experiment. One can cut a sample with the 
intention of exposing a surface parallel to one of the 
reflecting planes of the sample. However, in practice, 
this will usually result in some small angle of miscut 
between the unit vector np normal to the cut or 
'physical '  surface and n, the unit vector normal to the 
reflecting (crystallographic) plane of interest. In the 
calculations below, we find it convenient to describe 
the initial sample orientation in terms of Gxp and G tip, 
the components of G perpendicular and parallel to the 
cut surface, respectively, expressed in the laboratory 
coordinate system. Alternatively, we may wish to use 
G± and Gll, the components of G perpendicular and 
parallel to the crystallographic plane of interest. 
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To calculate G±p (G±) and GII p (GII), we need the 
components of np (n) in the laboratory coordinate 
system when the diffractometer is in its initial 
configuration (27 =q~ = 09 = 0 in Fig. 1). The proce- 
dure for obtaining them is described in § 6. Once np 
and n are known, it is a simple matter to obtain G±p, 
Gilt,, G± and GII from 

G±p = (np" G)np, GII p = G -- G±p, (3) 

G± = (n" G)n, GII = G - G±. (4) 

As illustrated in Fig. 3(a), the components of G in 
(3) at the initial sample orientation can be used to 
define a right-handed orthogonal unit-vector triple r, 
s, t fixed to the sample: 

r =  GI'p t - G ± P  s = t × r .  (5) 
G IIp' Gxp' 

Another orthogonal unit-vector triple could be 
defined in a similar way based on the crystallographic 
plane of interest using (4). 

As a result of the sample rotation necessary to 
satisfy the diffraction condition, the unit vectors r, s 
and t will rotate into the vectors r', s' and t', 
respectively, in the laboratory coordinate system. 
Similarly, the normal to the cut surface np and the 
normal to the crystallographic plane of interest n will 

t t become np and n, respectively, after the sample 
rotation. We can then define the components of the 
wave-vector transfer Q perpendicular and parallel to 
the physical surface and crystallographic plane of 
interest after the sample rotation in analogy to (3) and 
(4): 

Q±p = (np" Q)np, QIIp = Q - Q±p, (6) 

Q± = (n'. Q)n', QII = Q - Q±" (7) 

(a) (b) 

Fig. 3. (a) Diagram showing the orientation of the r, s, t orthogonal 
unit-vector triple in the initial sample configuration. (b) Diagram 
showing the r', s', t' orthogonal unit-vector triple after rotation 
of the sample to satisfy the diffraction condition; the unit vectors 
r, s and t are shown by dashed lines for clarity. 

Satisfaction of the diffraction condition requires 

r' = --QIIP t' - Q±P s' = t' x r', (8) 
QIIp' Q±p' 

as shown in Fig. 3(b). 
We can now reformulate the angle-settings problem 

as one of calculating values of the angles ¢p, 27 and o9 
that will exactly superimpose the two unit-vector 
triples r, s, t and r', s', t'. Such a calculation was 
discussed by Busing & Levy (1967) in obtaining the 
orientation matrix. The method we present in the next 
section differs from theirs in that we perform 
rotations of the sample in the laboratory coordinate 
system. We find this approach easier because the 
constraints of interest in surface-diffraction experi- 
ments are simply expressed in this frame. 

4. Calculation of the angle settings of the five-circle 
diffractometer for a specified surface orientation 

In the next section, we calculate Q and Q±p (and hence 
Q IIp) in the laboratory coordinate system from the 
diffraction condition Q = G and two additional 
constraints on the scattering geometry. In this section, 
we simply assume that Q and Q±p are known and use 
them to obtain values of the diffractometer angles ~o, 
X, eg, 6 and 20'. The special cases where either Q±p = 0 
(in-plane scattering) or Qlrp = 0 (specular reflection) 
are treated in the Appendix. 

We first note that the detector angles 6 and 20' can 
be calculated immediately from (1) if Q is known in the 
laboratory coordinate system. As discussed in the 
previous section, we calculate the sample rotation 
angles q~, 27 and o9 by requiring that the two unit-vector 
triples r, s, t and r', s', t' superimpose. These sample 
rotations are accomplished by simultaneous motion 
of the q~, 27 and o9 drives, after which G will point in 
the same direction as Q. Note that the ~o and 27 axes 
will themselves move in the laboratory frame. 
HoWever, because neither the 27 axis moves as a result 
of the ¢p rotation nor the co axis as a result of the 27 
rotation, the process can also be regarded as 
successive rotations by angles q~, 27 and o9 represented 
by the noncommuting matrices 4,(q~), X(X) and f2(o9). 
These matrices, expressed in the laboratory co- 
ordinate system, are 

ro J 
c ¢p 0 -s incp 

O(~o) = 1 0 , (9) 
Lsin~o 0 cos~o o oj 

X(27) = cos X sin 27 , (10) 
--sin27 cosx 

f2(eg) = [sino9 coso9 . (11) 

0 
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The wave-vector transfer Q and the reciprocal- 
lattice vector G are related by 

Qx,z = S(~0, ;t, 09)Gx,z, (12) 

where 

s(~p, x, 09) 
= o ( 0 9 ) x ( z ) ¢ , ( ~ )  

E J 
Sll S12 $13 

$21 $22 $23 

$31 $32 $33 

F(cos co cos - sin co sin sin q~) ( -  sin co cos )0 ~o X 
= |(sin co cos ~o + cos co sin )~ sin q~) (cos co cos )0 

/ 

L (cos ;( sin ~) ( - sin X) 

1 

( - cos  co sin ~0 - sin co sin Z cos ~P)/ 

( - s i n  co sin ~0 + cos co sin X cos ~o)J. 

(cos Z cos ~o) 
(13) 

Gxy~ and Qxrz are the vectors expressed in the xyz  
laboratory  coordinate  system. For  simplicity, we 
henceforth drop the subscript xyz  when denoting 
vectors in the laboratory  frame. Note that  the 
unitari ty of the matrices ~(~o), X(Z) and f2(09) ensures 
that Q = G. Similarly, we have Qip = GAp. 

Instead of trying to solve (12) directly for the angles 
~o, Z and 09, we introduce matrices 7"1 and T2 1, which 
transform any vector from the labora tory  coordinate  
system to the rst coordinate  system and from the r's 't '  
coordinate  system back to the labora tory  coordinate  
system, respectively. T 1 and T 2 '  can be written as 

y I ,r,z  T I =  "x s ' y  s = (s)x (s), (s)zl (14) 
x t ' y  t _(t)x (t)y (t)zJ 

T ; I =  r' y s' y-  = / ( r ) ,  (s'), (t')r | .  

r' z s' z" ' J  L(r')z (s')z (t')zJ 

(15) 

These matrices allow us to express the relation 
between G and Q as follows: 

Q =  TI 'Qr , , , , ,=  T ; X G , . , =  T 2 ' T I G .  (16) 

Here, Qr,s,r and G,s, are vectors expressed in the r 's ' t '  
and rst coordinate  systems, respectively. They are 
equal because the components  of G in a coordinate  
system fixed to the sample do not change upon sample 
rotat ion;  i.e. Grs t = Gr,s, r and Gr,s,,, = Q,,,,,, by the 
diffraction condition. Compar ing  (16) with (12), we 
obtain 

S((0, Z, 09)= T 2 ' T 1  - "1"3. (17) 

From (13) and (17), it is s traightforward to calculate 

the rotat ion angles tp, Z and 09. For  Z, we have 

Z = arcsin [ - (T3)32] ,  (18) 

where (T3)32 is the element in the third row and 
second column of the matr ix 7"3. This equat ion yields 
a unique value for Z in the range - re /2  < Z < re/2. To 
calculate q~, we use the relations (T3)a, = cos Z sin ~0 
and (T3)33 = cos Z cos ~0, so that  

(p = arctan [(T3)31/(T3)33 ]. (19) 

Similarly, we have the following relations for co: 
(T3)12 = - s i n  09 cos Z and (T3)22 = cos o9 cos Z, so 
that  

09 = arctan [-(T3h2/(T3)22].  (20) 

This completes the calculation of the three sample- 
rotat ion angles tp, Z and 09. 

5. Calculation of Q, Qxp and Q.p for the five-circle 
diffractometer under various constraints 

In the last section, we assumed knowledge of Q and 
its components  Q±p and QIIp with respect to the cut 
surface after rotat ion of the sample to satisfy the 
diffraction condition. These vectors, along with GAp 
and G ll p, the components  of the reciprocal-lattice 
vector of interest at the initial sample orientat ion in 
the labora tory  frame, were sufficient to determine 
uniquely the angle settings of the rotat ing-detector  
five-circle diffractometer. In this section, we calculate 
Q and Q±p in the labora tory  coordinate  system for 
various constraints  of interest in surface diffraction 
experiments. 

The first constraint  that  we impose on the scattering 
geometry is to fix either the incident or exit angle of 
the X-ray beam with respect to the surface of interest. 
One might instead requ i re the  two angles to be equal 
(Robinson, 1988). In the discussion above, we have 
already selected the cut surface as the one of interest. 
For  this surface, the incident angle ~ and exit angle fl 
are related by GAp = Q±p = k (sin 0~ + sin fl), as can be 
seen from Fig. 4(a). Hence, the first constraint  can 
always be expressed by specifying the incident angle 

(Vlieg, Van der Veen et al., 1987; Mochrie,  1988). 
We can see from Fig. 4(b) that  fixing ~ determines the 
x component  of Qlp  in the laboratory  coordinate  
system" 

(Q±p)x = Q±p " Ki/Ki = Qip cos[(rc/2) + 0~3 

= - GAp sin 0~. (21) 

With the out-of-plane motion of the detector in the 
five-circle diffractometer, a second constraint  must be 
imposed to yield a unique solution for the angle 
settings. Two useful choices for this constraint  have 
been discussed by Vlieg, Van der Veen et al. (1987) 
for a five-circle diffractometer. At the diffraction 
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condition, either (1) the cut-surface normal n~, or (2) 
the crystallographic-plane normal n' lie in the 

t horizontal (xz) plane. The condition on np ensures 
that, for small angles of incidence, the sample 
intercepts as much of the incident beam as possible 
while that on n' allows one to utilize the finite 
instrumental resolution more effectively. 

The relation between the direction of the crystallo- 
graphic plane normal n' and the instrumental 
resolution can be seen as follows. In a surface 
scattering experiment, one may be interested in 
scanning a diffraction rod that is parallel to n'. As 
discussed by Vlieg, Van der Veen et al. (1987), the 
intensity distribution along the rod is generally broad, 
but it can be narrow perpendicular to the rod (parallel 
to the crystallographic plane). For this reason, it is 
desirable to have better Q resolution in a direction 
perpendicular to the rod than parallel to it. Since the 
divergence of a beam from a synchrotron source is 
much larger horizontally than vertically, this can be 
achieved by confining the diffraction rod to the 
horizontal plane. 

A third choice of constraint for the five-circle 
diffractometer is simply to fix 6, the angle between K s 
and the xy  plane (see Fig. 2). One reason for doing 
this is to prevent a reduction in scattered intensity at 
large 6 from the polarization factor (e.g. Warren, 
1969). Another reason for fixing 6 arises when the 
divergence of the exit beam is determined by a pair 
of slits. Then the Q resolution of the diffractometer 
depends on the sample-slit distance and hence on 6. 

(a) 

(b) 
Fig. 4. (a) Real-space scattering geometry: the incident beam of 

wave vector K~ is directed along the + x axis and makes an angle 
20 with the outgoing wave vector Kf; e and fl are the angles of 
the incident and diffracted beams, respectively, to the sample 
surface. (b) The relation between Ki, the cut surface, and the 
crystallographic plane of interest after the sample rotation. The 
dashed lines represent the crystallographic plane. 

In this case, it may be useful to fix J in order not to 
affect the instrumental resolution. 

We now show how to obtain Q and the y and z 
components of Q±p in the laboratory frame for each 
of these three choices of the second constraint. 

(i) The detector rotation angle (5 is held constant. 
For fixed 6, one can easily calculate 20' from (2) and 
obtain Q from (1). To facilitate calculation of the y 
and z components of Q±p, we introduce a new 
Cartesian coordinate system spanned by the orthogo- 
nal unit-vector triple x 1, yl, z 1, in which the z 
component of Q is zero: 

x I = x, (22a) 

yl = [Qff(Q2 + Qz2)l/2]y + [Qz/(QZy + QzE)l/Z]z 

= ~y + {z, (22b) 

zl = xl x yl. (22c) 

In this coordinate system, the calculation of Q.l_p is no 
more difficult than for the four-circle diffractometer 
where Q is confined to the xy  plane in the laboratory 
frame. 

Next, define the matrix T4 such that T41 transforms 
any vector from the xlylz  1 to the xyz system: 

[x x x, x zl I Ei i il T~- I=  y . x  1 y . y l  y . z  1 = _ . 

z . x  I z . y  1 z . z  ~ 

(23) 
In particular, we can apply T~ 1 to Qx,r,z, and its 
components" 

Q -1 
= T4 Qx,y,z,, Q±p = T4  l(Q.l_p)x,y,z,, 

Qtlp = T2  a(QiLp)x,y,z,. (24) 

Because Q has already been determined, Qx~y,z ~ c a n  
be calculated to be 

Qx,y,z,= a2 = (Q2y +Q2)1/2 , (25) 

a 3 0 

as can be seen from (22). Now define the components 
of Q±p and QIIv in the xlyXz 1 coordinate system to be 

(Q±p)~,,y,z,= b : ,  (Qiip)x,y,z,= c 2 . (26) 
\ b 3 /  c3 

Note that bl is already known from the first constraint 
[(21), because (Q.p)x = (Q±p),,, from (24). To find b2 
and b3, we use the fact that (Qiip)x~y,z,, (Qlv)x,r,z~ and 
Qxly,z, form a right triangle so that 

Qx,y,z," (Q±p)~,r,z, = I(Q±v)~,r,z,I 2 

= a~b~ + a2b2 + a3b3 

= albl  + a2b2 (27) 
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because a3---0 [(25)]. Then, from (26) and (27), we 
obtain 

I (Q±p)x ,y ,z , ]  2 = b 2 + b 2 + b 2 = axb 1 + azb2 = G 2 p ,  

(28) 

where the last step follows from the unitarity of the 
matrix S in (12) and of T,~ 1 in (23). Solving (28), we 
obtain bE and b3 in terms of known quantities: 

b 2 = (G2p  - a x b l ) / a z ,  (29) 

b3 = (GEv  - b 2 - bE) 1/2 (30)  

Therefore, we have calculated (Q±p)x,y,z, and can 
obtain Qlp = T2 l(Q~_)x,y,~,. Because Q has already 
been determined, Qllp can be obtained from 
QIIP = Q - Q l p .  Knowing Qip and Qltp, we can 

' ' t '  calculate the unit vector triple r ,  s, in (8) and hence 
the matrix T 3 in (17) needed in the calculation of'the 
sample rotation angles ~0, X and m. 

(ii) After rotation to the diffraction condition, the 
t normal to the cut surface np remains in the'horizontal 

plane. From Fig. 1, we see that this constraint requires 
t t that the y component of np to be zero, i.e. (np)y = O. 

t Since Q±p is parallel to np, we also have (Q±p)y = O. 
Note that the expression of this constraint is much 
simpler than in a method based on the Busing & Levy 
(1967) formalism [see equation (35) in Vlieg, Van der 
Veen et al. (1987)]. Recalling that (Q±p)x is known 
from (21) and using the condition QZp = G2v, we can 
solve for (Q±Pz: 

((-) ~211/2 
(Q±p)z = [ G Z p  --  (Q±p)2 _ ,sdzply..i 

= [ O i .  m ~EqX/2 

= G±p[1 - sin E ~]1/2 (31) 

Here, the negative solution for (Q±p)z is excluded 
because ;t is constrained to the range -7t/2 _< Z -< re/2. 
Hence, we again have all three components of Q±p. 

To obtain Q, we first note that its x component is 
known from (1) and (2)" 

Qx = -QE/2k ,  (32) 

wherc Q2 = G E. Then, in analogy to (27), we have 

Q . Q z v = Q E I p  

= Qx(O±p)x + Qy(Qlp),. + Qz(Q±p)z 

= Qx(Q±p)x + Q~(Q±p)~ 
=G2p,  (33) 

since (Q±p)y = 0. This equation can be solved for Q~ 
to give 

Qz = [ G 2 p  - Q x ( Q z p ) x ] / ( Q ± p ) z ,  (34) 

where all quantities are now known on the right-hand 
side. Thus, we have calculated both Qx and Q~; 
knowing Q = G, we can find Qy. This completes the 

determination of both Q±p and Q in the laboratory 
frame. 

(iii) After rotation to the diffraction condition, the 
normal to the crystallographic surface n' remains in 
the horizontal plane. This constraint requires that the 
y component of n' be zero (see Fig. 1): 

(n')y = (T3n)y = 0, (35) 

where T3 has been defined in (17). Because Q± is 
parallel to n', (35)implies (Qz)y  = 0. Note that the 
fixed-incident-angle constraint in (21) is with respect 
to the cut surface and yields (Q+Px, whereas (35) 
involves a condition on (Q±)y. As in the case of the 
rotating-table five-circle diffractometer (Vlieg, Van der 
Veen et al., 1987), there is no simple analytical solution 
for this situation. However, a numerical solution can 
be found by varying 6 until (35) is satisfied. As 
discussed in part (i) of this section, specifying 6 
determines Q, which, together with the fixed-incident- 
angle constraint in (21), determines Q±p and Qllp. 
These components of Q and those of G in the initial 
sample orientation yield a unique T3. If the miscut 
angle is small, an initial value for 6 can be obtained 
by using constraint (ii). For samples with no miscut, 
constraints (ii) and (iii) are equivalent. 

The calculations in this section could be repeated 
considering a crystallographic plane rather than the 
cut surface to be of interest. The problem would then 
be to obtain Q± defined by (7) in the laboratory frame 
assuming GI  [(4)] to be known. In this case, 
constraint (iii) would yield an analytical solution 
whereas (ii) would not. 

6. Crystal alignment 

In this section, we discuss how these angle-setting 
calculations may be implemented in a typical surface 
diffraction experiment starting from unknown crystal 
and surface orientations. To determine the sample's 
crystallographic orientation in the laboratory co- 
ordinate system requires observation of two or more 
bulk-diffraction peaks (Busing & Levy, 1967; 
Hamilton, 1974). These can be difficult to find if the 
peaks are very sharp in all directions. Therefore, as 
pointed out by Vlieg, Van der Veen et al. (1987), it is 
convenient to begin by determining the physical or 
cut-surface normal np in the laboratory coordinate 
system. This facilitates accessing crystal truncation 
rods (Robinson, 1986), which are parallel to np and 
which are useful in locating the bulk diffraction peaks. 

The orientation of the cut surface can be determined 
using specular reflection of X-rays or even relatively 
long wavelength laser light. After the sample is 
mounted, the q~ and X circles are adjusted until the 
reflected beam is independent of rotation about the 

axis. Suppose this occurs when q~ = ~0o and g = go, 
we can then calculate the sample surface normal np in 
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the laboratory coordinate system when all angle 
settings are zero (initial position): 

t np = cb(-- q~o)X ( -  g0)np, (36) 
where 

Up = 

Using (9) and (10) for the matrices 4, and X, 
respectively, we obtain 

[sin ¢Po c°s :~oj F(np)~ 
np = / - s i n z o  ~ / ~ ' " ) ' /  (37) 

L cos q~o cos Zo L(np)zJ 
Here, (np)x and (np) r and (np) z are the x, y and z 
components of np in the laboratory system. 

To orient the sample crystallographically requires 
searching for two or more bulk reflections. Here, we 
describe a search procedure based on accessing a 
point on two different crystal truncation rods of the 
sample. This discussion serves to illustrate the 
formalism developed in previous sections. We assume 
that the sample miscut is small so that the normal to 
the cut surface and that of the crystallographic plane 
of interest are approximately parallel, i.e. n ~, np. 
Furthermore, we assume that two reciprocal-lattice 
vectors of the sample, bl and b2, are in this 
crystallographic plane and that b 3 is normal to it. The 
general reciprocal-lattice vector G is given by 

G = hb x + kb 2 + lb3, (38) 

where hkl are the usual Miller indices except that here 
l need not be an integer. 

We have in our UHV chamber a low-energy 
electron diffraction system equipped with a two- 
dimensional position-sensitive detector whose diffrac- 
tion patterns along with knowledge of np can aid in 
locating the crystal truncation rods. Suppose that we 
have accessed with the X-ray diffractometer in the 
four-circle mode (6 = 0) a point on each of the crystal 
truncation rods associated with the reciprocal-lattice 
vectors ba and b 2. We denote these points QI and Q2, 
corresponding to angle settings rpl , )~1, col, 20'1 and 
~o2, Xz, coz, 20~, respectively. When the diffractometer 
is returned to its initial configuration (~o = )~ = co = 0), 
these points will be be represented in the laboratory 
coordinate system by reciprocal-lattice vectors G~ and 
G 2 with Miller indices (10/0 and (0112) , respectively. 
Using the expression for Q in the laboratory 
coordinate system in (1) with 6 = 0, we can obtain 
expressions for the G~: 

Fcos 2 0 ' i -  1] 

G i =  kq) ( - rP i )X( -x i ) f2 ( -co i )  [ Sio20' i J, 

for i =  1, 2, (39) 

where the matrices q~, X and s2 are given by (9), (10) 
and (11). Under the assumption that n ~ np, the Gi 
can be projected onto the crystallographic plane of 
interest to yield the bi in the laboratory frame: 

b i ~ G i - ( n p "  Gi)np, for i = 1, 2. (40) 

In this example, b 3 is perpendicular to the 
crystallographic plane of interest and known to have 
magnitude b3, so 

b 3 = b3n ~ b3n p (41) 

and the Miller indices l~ of the points on the truncation 
rods are 

l i ~- np. Glib3, for i = 1, 2, (42) 

where np is given by (37). Hence, we have obtained 
approximations to all of the b~ and, by (38), to any 
bulk reciprocal-lattice vector G in the laboratory 
frame at the initial sample position. Approximate 
values of G±p and Gir p can be calculated from (3) and 
the corresponding orthogonal unit-vector triple r, s, t 
from (5). 

To search for the bulk reflection corresponding to 
the reciprocal-lattice vector G, we need approximate 
values for sample rotation angles ~0, t: and co. 
Computation of these in §4 requires calculating the 
components Q±p and Q IIp of the wave vector Q 
corresponding to G as discussed in §5. Because we are 
working in the four-circle mode, we have the 
fixed-detector-angle constraint 6 = 0, which allows 
one to calculate 20' from (2) and Q from (1). A second 
constraint, on the incident angle 0~, can then be 
imposed using (21) to obtain Qxp and QIIp [cf. 
(26)-(30)] and thus the unit-vector triple r', s', t' from 
(8). Since r, s, t have also been determined, the matrix 
T 3 in (17) can be calculated to yield approximate 
values of q~, X and co from (18)-(20). Once two bulk 
reflections have been found by this procedure, the 
crystal orientation in the laboratory frame can be 
determined (Wang, 1992; Busing & Levy, 1967; 
Hamilton, 1974). 

7. Concluding remarks 

A summary of the various suggested modes of 
operation of the rotating-detector five-circle diffrac- 
tometer is presented in Table 1. A list of possible 
constraints appears in the second column where one 
from each of two sets must be selected. The third 
column contains derived quantities in the order in 
which they are calculated in ~ 4 and 5. 

The method presented here for the calculation of 
the angle settings of the rotating-detector five-circle 
diffractometer can also be applied to the conventional 
four-circle and rotating-table five-circle diffrac- 
tometers. To apply the method to a four-circle 
diffractometer, one simply sets 6 -- 0, as shown in the 
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Table 1. Summary o f  operational modes o f  the 
rotating-detector five-circle diffractometer 

In each mode, one constraint in the second column is imposed from 
each of types 1 and 2. Derived quantities are listed in the third 
column in the order in which they are calculated in the text. a and 
fl are the angles of the incident and diffracted beams, respectively, 
defined in Fig. 4. The angles cp, X, o9 and 20' of the conventional 
four-circle instrument are defined in Fig. I. 6 is the detector angle of 
the five-circle diffractometer defined in Figs. 1 and 2. When 6 = 0, 
the diffractometer is identical to the standard four-circle instrument. 
The wave-vector transfer Q and its components Ql~ and Q,p are 
shown in Fig. 3(b). (Q±p)x, (Q±p)r and (Q±p)z are the components of 
Q.Lp in the laboratory system. After rotation to the diffraction 
condition, the normal to the cut surface and crystallographic plane 
of interest are described by the unit vectors, n'p and n', respectively, 
as shown in Fig. 4(b). 

Constraint 
type Constraint Derived quantities 

1 ~* (Q±p)x 
1 fl* (Q±p)x 
1 ~ = [3t (Q±. )x  
2 6" 20', Q, (Q±,),, (Q±,)z, Q,, ,  tp, X, co 
2 n'p horizontal (Qip)r, (Q-p),, Q, 20', h, Q,p, ¢p, x, co 

[(n'p)~ = o] 
2 n' horizontal No analytical solution 

[(n')r = 0] 

* Set to any required value. 
1" ct and fl are determined by the value of Glp. 

preceding section. For  the rotat ing-table five-circle 
diffractometer,  one can define a Cartesian coordinate  
system fixed to the ~ circle [see Figs. 1 and 2 in Vlieg, 
Van der Veen et al. (1987)]. In this coordinate  system, 
all calculations would be the same as for the 
four-circle diffractorn, eter except that  the incident 
wave vector Ki has both x and z components  that  
depend on the rotat ion angle ~. 

The angle-setting calculations described in this 
paper  have been implemented in a computer  p rogram 
that  has been tested on a rotat ing-detector  five-circle 
diffractometer at the M A T R I X  beam line of the 
NSLS. An earlier version of the p rogram was used to 
operate  the same diffractometer in a four-circle mode 
for experiments with xenon films physisorbed on a 
single-crystal A g ( l l l )  surface (Dennison et al., 1992; 
Wang,  1992; Dai,  Angot,  Ehrlich, Wang  & Taub,  
1993). 

This work was partially suppor ted by US Nat ional  
Science Founda t ion  Gran t s  nos. DMR-8704938 
and DMR-9011069 and US Depar tment  of Energy 
G r a n t  no. DE-FG02-85ER45183  of the M A T R I X  
Part ic ipat ing Research Team. 

A P P E N D I X  
Angle calculations for special cases 

Specular scan 

For  specular scans, G,~, = Q lip = 0. Therefore, the 
total wave-vector  transfer equals the perpendicular  

wave-vector  transfer, Q = Q±p. As shown in §§3 and 
4, one must  have nonzero values for G , p  and G±p to 
yield a unique solution for the angle settings. To 
accomplish this, we find an arb i t ra ry  unit vector r such 
that  

r . G / G = O .  (A1) 

There are an infinite number  of choices for r in the 
plane perpendicular  to G. Similarly, we find a unit 
vector r' such that  

r ' . Q / Q = O .  (A2) 

An example of r' would be 

r ' =  (K, + Q/2)/IK, + Q/21. (A3) 

In this way, we calculate all the angle settings for 
the specular scan case. Note  that  the angle settings 
depend on the choice of r and r'. Thus, there are an 
infinite number  of solutions. 

In-plane scan 

In this case, the perpendicular  wave-vector  transfer 
Q±p = Glp  = 0. For  convenience, we define a d u m m y  
unit vector t = np. After the sample rotat ion,  this unit 
vector becomes t', which is perpendicular  to the 
scattering plane: 

t ' =  (Kf X Ki)/IK f × Kil. (A4) 

Using these unit vectors t and t', we can find a unique 
solution for the angle settings at a given angle 6 as 
discussed in ~ 3  and 4. 
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