www.elsevier.nl/locate/physc

Measurements of magnetoresistivity and magnetization of Sr₂RuO₄ single crystals

JunHo Kim^a, N.R. Dilley^a, R.P. Dickey^a, A. Amann^a, C. Sirvent^a, M.B. Maple^a, Hazuki Kawano^b, Pengcheng Dai^b

^aDepartment of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093-0360

^bOak Ridge National Laboratory, Oak Ridge, TN, 37831-6393

We report measurements of magnetoresistivity, dc magnetization, and ac magnetic susceptibility on several single crystal samples of Sr_2RuO_4 ($T_c = -1$ K). Magnetoresistivity was measured in the temperature range 0.1 \sim 4K, and in applied magnetic fields up 6 tesla. The magnetic field and current were applied both parallel and perpendicular to the c-axis of the crystal. From the measurements, we determined the superconducting upper critical field, $H_{c2}(T)$. We observed that in magnetic fields above H_{c2} , and for transport currents both in the abplane and along the c-axis, Sr_2RuO_4 exhibits a metallic resistivity down to 0.1 K. We have also studied the magnetic phase diagram by measuring dc magnetization M(H) in the temperature range 0.4 \sim 2 K and in applied fields up to 60 mT along the c-axis of the crystal using a Faraday magnetometer. We discuss the resistively and magnetically determined superconducting phase diagrams along with ac susceptibility data.

1. Introduction

The discovery of superconductivity in the layered perovskite Sr_2RuO_4 (SRO) [1] has attracted much attention due to the fact that it might be a p-wave superconductor [2]. Recent NMR [3] and μ SR [4] experiments give strong evidence of p-wave superconductivity.

In this paper, we report the magnetic phase diagrams of SRO, which were derived from measurements of magnetoresistivity from $0.1 \sim 4 \text{ K}$ and dc magnetization from $0.37 \sim 1 \text{ K}$.

2. Experiments

We measured the magnetoresistivity of SRO in a 3 He- 4 He dilution refrigerator in the temperature range $0.1 \sim 4$ K, in applied magnetic field up to 6 tesla, using a standard 4 probe method. Contact resistance $\sim 0.5~\Omega$ was obtained by attaching gold leads with silver epoxy (Epotek) cured at 500° C for 3min.

The magnetic field was applied both parallel and perpendicular to the c-axis of the crystal. The results are shown in Figs. 1 and 2. The superconducting transition temperature (T_c) was defined as the midpoint of the transition. As the magnetic field is increased up to 6 tesla (> $100 \cdot H_{c2}(0)$), the resistivity along the c-axis and the ab plane exhibits metallic behavior down to $0.1 \cdot K$ ($\approx 0.1 \cdot T_c$), which is an

unusual feature compared to that among high T_c superconductors [5, 6].

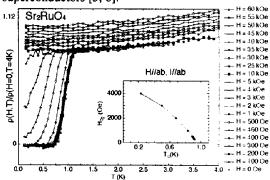


Fig.1. Normalized resistivity vs. temperature with magnetic field parallel to the ab plane of the crystal ($T_c = 0.95~\text{K}$). The direction of Lis perpendicular to that of H. Inset: H_{c2} -T phase diagram. T_c was defined as the mid-point of the superconducting transition.

Through measurements of magnetoresistivity, we obtained the magnetic phase diagram, $H_{c2}(T)$, which is shown in insets of Figs. 1 and 2.

 $H_{c2}(T)$ for magnetic field parallel to the ab plane is approximately one order of magnitude larger than that for the magnetic field along the c-axis. The $H_{c2}(T)$ curves for both magnetic field directions exhibit negative curvature, in contrast to the positive curvature seen in hole [7] and electron [8] doped cuprates.

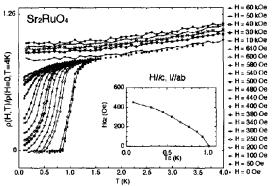


Fig.2. Normalized resistivity vs. temperature with magnetic field parallel to the c axis for a crystal with $T_c=1~K$. Inset: H_{c2} -T phase diagram. T_c was defined as the mid-point of the superconducting transition.

We also measured the dc magnetization of SRO ($T_c = 1.09$ K) with the magnetic field applied parallel to c-axis of a SRO crystal using a Faraday magnetometer. Based on magnetization curves, we obtained the magnetic phase diagram shown in Fig. 3. The insets of Fig. 3 show the transition curve in zero field and a magnetization curve measured at 0.37 K. The smooth transition of the ac susceptibility curve implies that this sample is relatively homogeneous and clean. These $H_{c2}(T)$ values are similar to those obtained by ac suceptibility measurements [9].

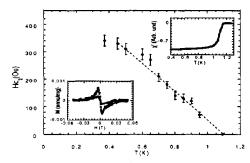


Fig. 3. H_{c2} vs. T obtained from measurements of dc magnetization using a Faraday magnetometer. Insets: dc magnetization curve at 0.37 K and ac susceptibility measurement ($T_c = 1.09$ K). The dashed line is a linear fit near T_c .

3. Summary

We measured the magnetoresistivity of SRO single crystals whose T_c 's were 1 K and 0.95 K. From these measurements, we obtained the magnetic

phase diagrams ($H_{c2}(T)$) for the magnetic field both parallel to the c-axis and the ab plane. The curvatures of resistive $H_{c2}(T)$'s are negative for both magnetic field directions. We also observed that SRO exhibits metallic resistivity behavior down to the 0.1 K ($T/T_c \approx 0.1$), when the magnetic field was increased to 6 T (> 100- $H_{c2}(0)$). Using a Faraday magnetometor, we measured the dc magnetization of SRO ($T_c = 1.09$ K) with magnetic field parallel to the c-axis of the crystal, which gave an $H_{c2}(T)$ curve simillar to that reported by other groups.

This research was supported by the U.S. DOE under Grant No. DE-FG03-86ER45230 at UCSD and DE-AC05-96OR22464 with Lockheed Martin Energy Research at ORNL. J. H. Kim and CS acknowledge financial support from the KOSEF and the Spanish MEC, respectively.

References

- Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature, 372 (1994) 532.
- M. Rice and M. Sigrist, J. Phys.: Cond. Matt., 7 (1995) L643.
- K. Ishida, H. Mukada, Y. Kitaoka, K. Asayama,
 Z. Q. Mao, Y. Mori, and Y. Maeno, Nature, 396 (1998) 658.
- G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature, 394 (1998) 558.
- G. S. Boebinger, Y. Ando, A. Passner, T. Kimura M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, S. Uchida, Phys. Rev. Lett., 77 (1996) 5417.
- Y. Ando, G. S. Boebinger, A. Passner, N. L. Wang, C. Geibel, F. Steglich, T. Kimura, M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, S. Uchida, Physica C, 282-287 (1997) 240.
- Y. Ando, G. S. Boebinger, A. Passner, L. F. Schneemeyer, T. Kimura, M. Okuya, S. Watawuchi, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, S. Uchida, Phys. Rev. B, 60 (1999) 12475.
- Y. Dalichaouch, B. W. Lee, C. L. Seaman, J. T. Markert, and M. B. Maple, Phys. Rev. Lett., 64 (1990) 599.
- Z. Q. Mao, Y. Mori, Y. Maeno, Phys. Rev. B, 60 (1999) 610.