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We study the spin- and vacancy-ordered states in 122 iron chalcogenides (A1−yFe2−xSe2) by inspecting the
magnetic ground states of a J1-J2-J3 model on different vacancy-ordered lattices observed/conjectured in these
compounds. A highly frustrated J1-J2-J3 model was first applied to the study of magnetism in FeTe and was
reported to explain the inelastic neutron-scattering data qualitatively. We find that the vacancy-ordered states are
generally energetically favored for their reduction of magnetic frustration inherent to the spin-exchange model
and, especially, that the 245 vacancy-spin-ordered state minimizes the magnetic exchange energy among all
known vacancy-ordered states, in line with the fact that it has the highest vacancy-ordering phase transition
temperature and the largest ordered moment in all iron-based superconductors. Thus, our study provides an
electronic perspective for understanding the various vacancy orderings in these compounds. Then we focus on
the experimentally well-studied 245 state and calculate the spin-wave spectrum and dynamic spin susceptibility.
Finding that the key features of these calculated quantities are consistent with a recent inelastic neutron-scattering
experiment, we conclude that we have obtained a qualitative local spin model for the 245 state. We also discuss
the possibility of a unified local-moment description for all iron chalcogenides based on our result.
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I. INTRODUCTION

The recent discovery of a new family of iron-
based superconductors, the 122 iron chalcogenides
A(K,Cs,Rb)yFe2−xSe2,1–3 with a superconducting (SC) tran-
sition temperature even higher than 40 K, has attracted
much research attention. The compounds are heavily electron
doped with only electron Fermi pockets, mainly located
at the M point of the folded Brillouin zone (BZ) shown
by both angle-resolved photoemission spectroscopy4–6 and
local-density approximation (LDA) calculations.7–9

Although almost all compounds of the family share key
features in electronic structures, it is difficult to make a
general statement on the vacancy ordering and spin ordering
in A1−yFe2−xSe2, as the type of vacancy order and magnetic
order is highly sensitive to the contents (x and y) of the
specific compound. Furthermore, it is technically very hard
to prepare a single-phase sample, rendering the assignment
of a specific ordering to a specific compound practically
impossible. Currently, people are only convinced that iron
vacancies always populate all compounds of the family and
they can order into different patterns in different compounds
and at various temperatures.10,12–16 Experiments show signs
of possible magnetic ordering at temperatures below or very
close to the vacancy-ordering temperatures, and first-principle
calculations propose various spin-ordering configurations for
various vacancy patterns; however, the only experimentally
established magnetic order is the “block antiferromagnetism”
in the 245 compounds (named after their nominal stoichio-
metric formula A2Fe4Se5, obtained by taking x = 0.2 and
y = 0.4). The magnetic ordering temperature can be as high
as 500 K and the ordered moment can be as large as three
Bohr magnetons,10,11 both of which make new records in
all iron-based superconductors. These interesting yet peculiar

properties warrant a focused study on the link between vacancy
patterns and magnetism in these systems.

For iron pnictides, their parental compounds display a uni-
versal collinear antiferromagnetic (CAFM) phase,17 which can
be described by a simple magnetic exchange model including
the nearest neighbor (NN) spin exchange J1 (becoming J1a and
J1b due to rotation symmetry breaking in the orthorhombic
phase) and the next-nearest neighbor (NNN) spin exchange
J2.18,19 However, for iron chalcogenides, different magnetic
orders have been observed.20,21 For example, the 11 iron
chalcogenides, FeTe1−xSex ,22 which can achieve the supercon-
ducting transition temperature around 40 K under pressure,23

can display both commensurate and incommensurate magnetic
states. The ordered magnetic moment of the parent compound
FeTe is about 2.0μb, significantly larger than iron pnictides as
well. Recently, it has been shown that the magnetic state of
FeTe, a bicollinear antiferromagnet (BAFM), can be described
by a strongly frustrated magnetic model including the nearest
neighbor J1, the next-nearest neighbor J2, and the third-nearest
neighbor (TNN) J3, i.e., the J1-J2-J3 model.24,25 It has been
determined that J1 is ferromagnetic (FM) while J2 and J3 are
antiferromagnetic (AFM).26

The values of the magnetic exchange coupling parameters
suggest that FeTe is close to a boundary between an incom-
mensurate magnetic phase and the BAFM phase so that the
latter can easily be destabilized by an introduction of a small
percentage of additional Fe atoms.20

However, it is still debated whether the effective models
with local magnetic exchange couplings are the right models
for describing the magnetism in iron-based superconductors.
For iron pnictides, there is less debate since the model is
simple and has gained support from different families of iron
pnictides. However, for iron chalcogenides, the model lacks
independent verification. Since the local physics of the 122
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iron chalcogenides should be similar to the one of FeTe, it
is naturally expected that both families of iron chalcogenides
should be described by similar models.

In this paper, we show that the theories for magnetism in
both families of iron chalcogenides can be unified under the
J1-J2-J3 model obtained for FeTe, where J1 is ferromagnetic
and J2,3 antiferromagnetic. On one hand, we show that the
magnetic frustration in the J1-J2-J3 model is reduced when
there is vacancy ordering and that, among various vacancy-
ordering patterns, the 245 state maximizes this reduction and
is hence energetically most favorable. The reduced frustration
in the 245 state compared with the high frustration in
vacancy-free FeTe is also reflected in the high Neel transition
temperature of the 245 state. These findings point to a possible
magnetic origin of the vacancy ordering. On the other hand,
we calculate spin-wave excitations over the 245 magnetic
ground state and identify features characteristic of the J1-J2-J3

model. These features are confirmed in a recent inelastic
neutron-scattering experiment on Rb0.8Fe1.58Se2, a typical
sample having the 245 state as the ground state. This shows that
the J1-J2-J3 model is qualitatively relevant to the magnetism
of the 245 state, as it is to the magnetism of FeTe.

The paper is organized as follows. In Sec. II we calculate
the classical ground-state energies of the J1-J2-J3 model
given a few vacancy patterns predicted by previous first-
principle calculation and supported by x-ray diffraction. Using
parameters (J1,2,3) from a recent fitting, the 245 state is
found to save the largest amount of exchange energy per site,
compared with other vacancy patterns. In Sec. III we calculate
the spin-wave excitations for the 245 state and the local
dynamic susceptibility. Three sets of parameters are chosen
as representatives of three possible parameter regions, and for
each set we go through features of the spin-wave spectrum.
In Sec. IV, we discuss other factors that may contribute to
the vacancy ordering but are not considered in the current
model, and we compare our model and result with those of
earlier first-principle calculations. We also discuss the impli-
cations of the J1-J2-J3 spin model on the superconductivity
in iron chalcogenides. We briefly summarize the work in
Sec. V.

II. MAGNETIC FRUSTRATION REDUCED BY VACANCIES
IN THE 245 STATE

Before we start to consider the effect of vacancy, let us
review the J1-J2-J3 model, which was used to describe the
magnetism in FeTe.24,25 The Hamiltonian is given by

H =
∑

α

Jα

∑
〈ij〉α

Si · Sj (1)

where α = 1,2,3 and 〈〉1,2,3 is the first, second, and third
neighbor, respectively. The BAFM state in FeTe, which breaks
the rotation symmetry, is stabilized by a coupling to the small
lattice distortion. In the BAFM state, this broken symmetry
can generate the anisotropy in J1 (J1a and J1b) and J2 (J2a and
J2b) couplings. For FeTe, by fitting the spin-wave spectrum, we
have obtained the values of the magnetic exchange couplings
with J1S ∼ −34 meV, J2S ∼ 22 meV, and J3S ∼ 7 meV,26

where S is the spin of each site. The anisotropy is shown
mainly in J1, with J1a−J1b

2 ∼ −16 meV.26 The most important

FIG. 1. (Color online) The bicollinear antiferromagnetic spin
structure of Fe spins observed in the 11 (FeTe/Se) systems. The figure
does not reflect a small lattice distortion in the magnetic phase. The
distortion can be viewed as an elongation of the unit cell along the
diagonal direction, which is 45 deg away from the lattice distortion
observed in iron pnictides. From the figure, it is easy to see that in
this ground state J1 and J2 are highly frustrated.

feature revealed from the fitting is that the NN coupling J1 is
FM while the other two, J2 and J3, are AFM. The sum of these
three coupling parameters is close to zero, which indicates the
model is highly magnetically frustrated.

Let us first ignore the anisotropy of the magnetic exchange
coupling J1,2 caused by symmetry breaking in the BAFM
state. We focus on the magnetic model in the tetragonal square
lattice. In the BAFM state as shown in Fig. 1, both J1 and
J2 are frustrated couplings and the magnetic energy is only
saved by J3. The saved magnetic energy per site is given by
EBAFM = −2J3S

2.
Now turn to the system of interest. Sharing with FeTe

the same structure and components of the FeSe plane,
stoichiometric (vacancy-free) 122 chalcogenides are expected
to be described by a similar J1-J2-J3 model with parameters
qualitatively consistent with those in FeTe, because we have
assumed a local-moment picture. To this “parent model,” we
add vacancies in ordered patterns as observed or predicted
in AxFe2−ySe2. Around one vacancy, J1’s, J2’s, and J3’s
connecting to it are removed, and J3 couplings that have the
vacancy along the exchange pathway are also removed. The
spins will reorder themselves to the change of the model. We
will see that the ground-state energy of the adapted model is
lower than the parent model; i.e., the magnetic frustration is
reduced by the vacancy ordering.

First we study the 245 state shown in Fig. 2, the magnetic
structure of which has been identified by neutron-scattering
experiments.10 In the 245 vacancy-ordered state, each site has
three NN and NNN couplings to its neighbors. Moreover,
one spin in every consecutive five spins (a 5-1 pattern)
along the Fe-Fe direction is removed. The odd number of
links for both NN and NNN couplings reduces the magnetic
frustration considerably. The 5-1 pattern saves energy from J3

as well. Therefore, the 245 state enhances the energy saving
from all magnetic exchange couplings. The magnetic energy
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FIG. 2. (Color online) Schematic of the J1-J2-J3 model in the 245
state. J1 and J ′

1 are NN couplings when the two spins belong to the
same and different four-spin blocks, respectively; J2 and J ′

2 are NNN
couplings when the two spins belong to the same and different four-
spin blocks, respectively; J3 and J ′

3 are TNN couplings when the two
spins belong to the same and different four-spin blocks, respectively.
Couplings not plotted in the figure can be obtained by translating the
plotted couplings by the lattice period of the vacancy-ordered phase.

saving per spin E245 = (−J1 + J2 + 2J3)S2/2. If we ignore
the lattice distortion and use the exchange parameters derived
from FeTe, E245 ∼ 70S meV, compared to EBAFM ∼ 14S

meV. Considering the fact that the ordered magnetic moment,
S ∼ 3μb, is also around 1.5 times larger in the 245 state
than in FeTe (S ∼ 2μb), the ratio of the magnetic energy
savings between two states is given by 1.5 × E245/EBAFM ∼
7.5. This ratio is in quantitative agreement with the ratio
of their magnetic transition temperatures 500 K/70 K ∼ 7.1.
(Note: In general, the magnetic transition temperature in a
quasi-two-dimensional material is given by TN ∝ E

ln E
Jc

, where

Jc is the coupling strength between layers and E is the in-plane
magnetic energy saving. It is almost linear in E if E � Jc.)
This shows that the high transition temperature in the 245 state
may be ascribed to the large reduction of magnetic frustration
in the J1-J2-J3 model.

It is also interesting to explore other possible vacancy
patterns and their associated magnetic orders. For such a
frustrated J1-J2-J3 magnetic model, however, there is no other
pattern that can reduce the magnetic frustration as significantly
as the 245 state. We list some possible patterns:

(1) Armchair dimer crystal patterns (the 212 pattern if we
consider K2FeSe2) shown in Fig. 3(a). In this pattern, half
of the spins are replaced by vacancies. The magnetic energy
saving per site is given by EADC = (J2 − J1)S2/2. The pattern
saves energy both from the NN FM and NNN AFM couplings.

(2) Square dimer crystal patterns shown in Fig. 3(b). The
energy saving from this structure stems from the NN FM J1,
the NNN AFM J2, and ESDC = −4J1+2J2

5 S2.
(3) The 234 vacancy patterns (named after K2Fe3Se4)

shown in Figs. 3(c) and 3(d). There are two different patterns.
The first pattern saves energy from FM J1 and AFM J2 but
pays an energy cost for AFM J3. The energy saving per site
is given by E234a = (−J1/3 + 2J2 − 2J3)S2. This magnetic

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (Color online) Possible vacancy orderings other than the
experimental 245 state and their ground-state spin configurations
calculated assuming a J1-J2-J3 model with ferromagnetic J1. (a) The
armchair dimer crystal pattern. (b) The square dimer crystal pattern.
These two patterns correspond to (x = 1,y = 0.5) or AFe2Se4. (c) and
(d) The two different possible vacancy patterns for (x = 0.5,y = 0)
or A2Fe3Se4. (e) and (f) Two different possible patterns for A4Fe4Se6:
(e) the dimer vacancy ordering similar to the CAFM magnetic phase
and (f) the diagonal stripe pattern where the magnetic ordering is
incommensurate.

structure is similar to the (0,π ) collinear AFM (CAFM)
observed in the parental compounds of iron pnictides. In the
second pattern, the magnetic state is also similar to CAFM.
The energy saving is given by E234b = 4S2

3 (J2 − J3/2). In
general, the 234 phase where the iron concentration is close
to 1.5 per unit cell most likely supports a CAFM magnetic
phase, similar to iron pnictides. In both patterns, there are
ferromagnetic moments on each layer. Between layers, spins
are antiferromagnetically aligned. The 234 vacancy pattern has
been observed experimentally.27 However, the magnetic order
has not been identified.

(4) The 446 pattern (K4Fe4Se6) shown in Figs. 3(e) and
3(f). There are also two possible patterns. The first pattern
is a dimer vacancy ordering. The magnetic pattern is also
close to the CAFM phase with an energy saving given by
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TABLE I. Possible magnetic ground-state configurations with
their energies magnetically saved. See Ref. 35 for the parameters
chosen for calculating the absolute values in the third column.

Configuration Energy saved (formula) Energy saved (meV)

E245
−2J1−J ′

1+2J ′
2−J2+2J3

2 S2 47.5S

E212 (J2 − J1)S2/2 30S

ESCD
−4J1+2J2

5 S2 33.6S

E234a (−J1/3 + 2J2 − 2J3)S2 18S

E234b
4(J2−J3/2)

3 S2 10S

E446a
J2−J3−3J1

4 S2 27.75S

E446b
3J2S2

2 + J 2
1 S2

8J2
31.5S

E234a = J2−J3−3J1
4 S2. The second pattern can be viewed as

a diagonal stripe similar to undoped cuprates.28 For such a
stripe pattern, all J3’s are removed. The magnetic structure can
be predicted to be incommensurate along the stripe direction
and AFM along the direction perpendicular to the stripe. The

total energy saving per site is given by E446 = 3S2

2 J2 + J 2
1 S2

8J2
.

The spin angle between two NN sites along the stripe
direction is given by cos θ = − J1

4J2
. In Table I, we list the

candidates for vacancy ordering and their respective energies
given in algebraic expressions and values calculated using
the parameters resulted from a fitting to an inelastic neutron
experiment.35

From the table, we find that all vacancy patterns save
magnetic energy in a highly frustrated J1-J2-J3 model, while
the 245 state has the largest energy saving. This finding points
to a possible electronic origin of the vacancy ordering in these
compounds. The ordered vacancies are energetically preferred
over the disordered vacancies. For this reason the vacancies
will form at least short-ranged orders to save energy. And the
245 vacancy pattern, being the most energetically favored, is
more likely to occupy a larger domain.

III. PROPERTIES OF THE 245 STATE
IN THE LARGE-S LIMIT

The 245 state is clearly the most stable magnetic state in
our model. In the following, we focus on this state. In the
ordered state, due to the anisotropy introduced by the vacancy
orderings, J1 breaks into J1 and J ′

1 and J2 breaks into J2 and
J ′

2. For a general discussion, we recover TNN couplings with
a vacancy along the exchange pathway and denote them J ′

3’s,
differentiated from J3 couplings that have no vacancy along the
path. See Fig. 2 for a schematic of this model. First, we analyze
the spin excitation in the large-S limit. To start a spin-wave
calculation, we denote the spin sites as follows. A generic
position of the spin is given by r = ml1 + nl2 + di, where m,n

are integers and l1 = (2x − y)/
√

5,l2 = (x + 2y)/
√

5, d1 =
0, d2 = x, d3 = x + y, d4 = y, where x,y are unit vectors
in the original orthorhombic lattice. We take the Holstein-
Primakoff transform for the given block-AFM ground state:

For m + n even,

S+(r) =
√

2Sai(R),

S−(r) =
√

2Sa
†
i (R), (2)

Sz(r) = S − a
†
i (R)ai(R).

For m + n odd,

S+(r) =
√

2Sa
†
i (R),

S−(r) =
√

2Sai(R), (3)

Sz(r) = −S + a
†
i (R)ai(R).

The full Hamiltonian of the model can
be put in a matrix form. Define ψ†(k) =
[a†

1(k),a†
2(k),a†

3(k),a†
4(k),a1(−k),a2(−k),a3(−k),a4(−k)],

and we have

H = 1

2

∑
k

ψ†(k)

[
A(k) B(k)

B(k) A(k)

]
ψ(k). (4)

A(k) and B(k) are four-by-four matrices, defined by

A(k) = S

⎛
⎜⎜⎜⎝

E0 J1e
ikx J2e

ikx+iky + J ′
3e

−i2kx J1e
iky

. E0 J1e
iky J

−ikx+iky

2 + J ′
3e

−2iky

. . E0 J1e
−ikx

. . . E0

⎞
⎟⎟⎟⎠ , (5)

B(k) = S

⎛
⎜⎜⎜⎝

0 J ′
2e

−ikx+iky + J3e
−2iky J ′

1e
−iky J ′

2e
−ikx−iky + J3e

2ikx

. 0 J ′
2e

−ikx−iky + J3e
2ikx J ′

1e
ikx

. . 0 J ′
2e

ikx−iky + J3e
2iky

. . . 0

⎞
⎟⎟⎟⎠ , (6)

where E0 = −2J1 − J2 + J ′
1 + 2J ′

2 + 2J3 − J ′
3. The lower triangle elements are suppressed because both matrices are hermitian.

By diagonalizing this Hamiltonian, we have

H =
∑

i=1,2,3,4;k

[γ †
i (k)γi(k) + 1/2]ωi(k) (7)
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and

ai(k) =
∑

j

Uij (k)γj (k) + Vij (k)γ †
j (−k). (8)

where U and V are 4 × 4 matrices to diagonalize the
Hamiltonian. The spin reduction due to quantum fluctuations
on each site is given by

δm = 1

4π2

∑
j

∫ 2π

0
dkx

∫ 2π

0
dky |V1j (kx,ky)|2. (9)

It is also interesting to calculate the dynamic factor S(ω) =
−	[χ (ω)], where the local susceptibility χ (ω) is defined as

χ (iωn) =
∑

q

∫
dτeiωnτ [〈S+(q,τ )S−(−q,0)〉

+〈S−(q,τ )S+(−q,0)〉]/N. (10)

After taking the Fourier transform, we obtain (from here, S = 1
is assumed for simplicity)

χ (ω) =
∑

k

∑
i,j

(|Vi,j (k)|2 + |Ui,j (k)|2)

×
[

1

ω − Ej (k) + i0
+ 1

ω + Ej (k) + i0

]
/N. (11)

Due to the enlarged unit cell, the BZ is one fifth of the orig-
inal unfolded BZ for one Fe per unit cell. The BZ is cornered
by the four (equivalent) points (−3π/5,−π/5), (π/5,−3π/5),
(3π/5,π/5), and (−π/5,3π/5), and these points are called
Ms points. It is convenient to define Xs = (2π/5,−π/5) and
Ys = (−π/5,−2π/5) for later discussion.

The spin wave has four branches. Depending on the
parameters, there can be finite gaps between the first and the
second branches and between the third and the fourth ones.
The middle two branches are degenerate at � and Ms points
and are in general close to each other. At high-symmetry
points, the spin-wave energy has analytic expressions. We
take S = 1 for convenience. At Ms and �, E1(�) = 0,E2(�) =
E3(�) = 2

√
(Je − J1 − J2 − J ′

3)(J ′
1 − J1 − J2 + Je − J ′

3),
and E4(�) = 2

√
2
√

(J ′
1 − 2J1)(Je − J1) where Je = J ′

2 + J3

is the effective antiferromagnetic coupling strength
between two four-spin plaquettes. At Xs , E1(Xs) =
2[J1 + √

(Je − J ′
3 − J1)(J ′

1 + Je − J ′
3 − J1)], E2(Xs) =

2
√

J 2
1 + (J2 − 2J ′

2)(J2 − 2J3) + ω, where ω = J ′
1(Je − J2)

− J1(J ′
1 + 2Je − 2J2), and E4(Xs) = 2[−J1 +√

(Je − J ′
3 − J1)(J ′

1 + Je − J ′
3 − J1)], which also defines

the spin-wave bandwidth. Another important experimentally
measurable quantity is the spin-wave velocity at low energy,
which is given by

vs =
√

5

2

√
{J1[J ′

1 + 2(J ′
2 + J3 − J ′

3)] + J ′
1(J2 − J ′

2 − J3 + J ′
3) + 2[J2(J ′

2 + J3 − J ′
3) + 2J3(J ′

3 − J ′
2)]}[J ′

1 + 2(J ′
2 + J3)]

J1 − J ′
1 + J2 − J ′

2 − J3 + J ′
3

.

(12)

We calculate spin-wave spectra and related features for
three different parameter sets. We first adopt the parameters
J1 = (J1a + J1b)/2 = −30 meV, J2 = 20 meV, and J3 =
9 meV. Due to lattice distortion that draws the four spins
in each new unit cell closer, the primed parameters can be
reduced from unprimed ones by the presence of iron vacancies:
J ′

1 = −10 meV, J ′
2 = 20 meV, and J ′

3 = 0 meV because of the
vacancy along the exchange pathway. For these parameters
the spin-wave spectra have a finite gap �12 = 10.2 meV
between the first and the second branches and a larger gap
�34 = 86.2 meV between the third and fourth branches. The
full bandwidth is W = 167.5 meV. The first branch starts
from zero energy at � and Ms and reaches maximum at
Xs ; the second and third branches start from minimum at
(3π/10,π/10) and its three C4 equivalents and reach maximum
at (0.45π,0.12π ). The fourth branch starts from E4(�) at � and
Ms to E4(Xs) at Xs . The ordered moment correction from the
spin wave is δm = 0.095. See Figs. 4(a) and 4(b) for details.

In choosing the second parameter set, we consider a
purely magnetic model without lattice distortion. Therefore
we take J ′

1 = J1, J ′
2 = J2. However, one still has J3 � J ′

3 ∼ 0
because of the vacancy along the exchange path for J ′

3. For
this parameter set, there is no gap between the first and
second branches, but the gap between the third and fourth
branch remains finite. The full bandwidth in this case is

W = 142.7 meV. The first three branches start from zero
energy at � and Ms and reach maximum at (3π/10,π/10) and
its three C4 equivalents. The fourth branch’s minimum and
maximum appear at the same points as in the first parameter
set. The ordered moment correction from the spin wave is
δm = 0.197. See Figs. 4(c) and 4(d) for details.

In FeTe, we found that the third neighbor exchange J3 is
needed to explain both low- and high-energy regions of dy-
namic spin susceptibility observed in the neutron experiment,
while a parameter fit without J3 significantly underestimates
the spin-wave bandwidth. J3 is also important in the current
system to stabilize the 245 state. For comparison, we adopt
the parameters we used to fit the FeTe system without J3 (see
supplementary materials in Ref. 26): (J1,J

′
1,J2,J

′
2,J3,J

′
3) =

(−12,−4,9,9,0,0) meV. The spin-wave correction to the
moment in this case is δm = 0.43, indicating much stronger
spin fluctuation.

The dynamic local susceptibility is shown in Fig. 5. Note
that around zero energy the dynamic factor should drop to zero
in a three-dimensional system but converge to a finite value
in our two-dimensional system. If we include a small Jz in
the beginning, we can make the curve drop to zero at zero
energy; however, the dynamic factor at ω � Jz is unaffected.
See Fig. 5 for the dynamic local susceptibility with all three
parameter sets given above.
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(a) (b)

(c) (d)

FIG. 4. (Color online) The spin-wave spectra of the lowest three
branches (the other one is too high to be drawn in the same plot) us-
ing the parameters (a) (J1,J

′
1,J2,J

′
2,J3,J

′
3) = (−30,−10,20,20,9,0)

meV and (c) (J1,J
′
1,J2,J

′
2,J3,J

′
3) = (−30,−30,20,20,9,0) meV. The

corresponding band structures are given in (b) and (d), in which the
red dashed lines represent the highest branch and the black solid lines
represent the lower three branches. Ms , Xs , and Ys are high-symmetry
points in the BZ that are defined in the text.

To complete our discussion, it is also interesting to check
what are the other possible ground-state spin configurations for
the same vacancy ordering of the 245 state. In the reasonable
parameter space, the following states can be considered: (1) the
ferromagnetic state if J1 and J ′

1 are large, (2) the AFM2 state
in Ref. 38, and (3) the incommensurate phase. The ground-
state energy for the first two are easy to calculate: EFM =

FIG. 5. (Color online) The dynamic factor S(ω) contributed
by the spin wave. The black solid line corresponds to
(J1,J

′
1,J2,J

′
2,J3,J

′
3) = (−30,−10,20,20,9,0) meV; the blue dashed

line corresponds to (J1,J
′
1,J2,J

′
2,J3,J

′
3) = (−30,−30,20,20,9,0)

meV; and the red dotted line corresponds to (J1,J
′
1,J2,J

′
2,J3,J

′
3) =

(−12,−4,9,9,0,0) meV. The main panel only includes the contribu-
tion from the lowest three branches, as the highest branch is too high
to be plotted in the same energy range. Inset: the contribution by the
fourth and highest branch.

(a)

(b)

FIG. 6. (Color online) The phase diagrams against (a) J1 and
J ′

1 taking J3 = 9/20J2 and J ′
3 = 0 and (b) J1 and J2 taking J ′

1 =
J1, J ′

2 = J2, and J ′
3 = 0. Solid lines mark second-order transitions

calculated from the spin wave, and dotted lines mark possible first-
order transitions. FM is the ferromagnet, AFM1 is the block spin, and
AFM2 is the commensurate state plotted in Fig. 2(b) of Ref. 38.

4J1 + 2J ′
1 + 2J2 + 4J ′

2 + 4J3 + 2J ′
3 and EAFM2 = −2J2 −

4
√

(J ′
2 + J3)2 + J ′

1
2
/4 + J ′

3 (per unit cell in the superlattice).
Comparing the energies, we have if |J ′

1| > 2(J ′
2 + J3) the

FM phase wins over the block-AFM phase and if J2 > J ′
3 −

J3 − J1 + J ′
2 + J ′

1/2 −
√

J ′
1

2
/4 + (J ′

2 − J3)2 AFM2 state has
a lower energy than the block-AFM state and thus becomes
preferable. Most importantly, an incommensurate (ICM)
state is the closest competitor to the block-AFM phase.
An analysis of the spin-wave Hamiltonian around the �

point gives us the phase boundary between the block-AFM
state and the ICM as drawn in Fig. 6. The boundary is
set by the equation J1[J ′

1 + 2(Je − J ′
3)] + J ′

1(J2 − Je + J ′
3) +

2[J2(Je − J ′
3) + 2J3(−J ′

2 + J ′
3)] = 0. We draw Fig. 6(a) for a

phase diagram against J1 and J ′
1, fixing J2 = J ′

2, J3 = 9J2/20,
J ′

3 = 0, and Fig. 6(b) for a phase diagram against J1 and J2,
fixing J ′

1 = J1, J ′
2 = J2 and J ′

3 = 0.
After finishing the first version of the paper, three of us

collaborated on an experimental work35 and verified that
the case described by the first parameter set is qualitatively
consistent with the dynamic spin susceptibility measurement
in Rb0.8Fe1.58Se2. A careful fitting was carried out and an
improved set of parameters was obtained in that work.
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IV. DISCUSSION

We have shown that the 245 vacancy pattern can be naturally
obtained through comparing the magnetic energy saving in a
strongly frustrated magnetic J1-J2-J3 model. It is necessary to
address a few limitations in the model we used and compare our
results with other works that have studied the 245 state. First,
in our above analysis, we only consider the magnetic energy
and ignore other possible energy sources. In real materials, it
is possible that other energy sources may make a significant
contribution as well. For example, creating a dimer of two
vacancies may cost a higher or lower energy than having
two individual vacancies. Therefore, comparing a dimer
vacancy pattern to a nondimer pattern requires further careful
consideration. The LDA calculation may help to address it.29

Second, we ignore lattice-magnetic coupling, which could be
strong in these materials. A lattice distortion that breaks the
same lattice symmetry as the magnetic pattern should naturally
take place above or at the magnetic transition temperature,
similar to what has been observed in iron pnictides.17 Third,
LDA + U calculations have captured the correct magnetic
ground state in the 245 vacancy pattern and have extracted
the values of magnetic exchange couplings.7 However, the
extracted values are not consistent with our picture. In their
results, the NNN exchange couplings J ′

2 and J2 are very
different and there is no J3. We expect that J2 and J ′

2 should
be not drastically different and J3 should be non-negligible.
Similar inconsistency between LDA results and experimental
results on the values of magnetic exchange couplings also
exists in FeTe.26,30 Such an inconsistency may stem from the
fact that LDA calculations essentially are mean-field solutions.
The exchange couplings extracted from LDA calculations
depend on designed magnetic structures’ energies, which are
compared, as well as on the strength of electron-electron
correlation in LDA+U. Finally, the NN exchange coupling is
strongly FM, which contributes the largest part of the energy
in the 245 phase. This strong FM coupling leads to a high
magnetic transition temperature observed in the 245 phase.
It is interesting to note that the 245 pattern has also been
obtained in the one-band t − J − V model,31 which is driven
by magnetic energy saving in proper parameter regions.

Our results also have important implications on supercon-
ductivity in these materials. The ferromagnetic coupling does
not contribute to any spin singlet pairing in a superconducting
(SC) state. Therefore, although the NN FM coupling can cause
a high magnetic transition temperature in the 245 state, the
SC transition temperature is not expected to scale with the
magnetic transition temperature because the SC transition
temperature is determined by the strength of the AFM cou-
plings. The SC pairing is mainly determined by the AFM J2.32

Since the SC transition temperatures for both iron pnictides
and iron chalcogenides are similar, the J2 value is expected
to be similar as well.33,34 The existence or absence of J3

differentiates iron chalcogenides from iron pnictides. J3 leads
different magnetic orders in iron chalcogenides. The effect of
J3 in the superconducting state should also be interesting. In
fact, J3 can enhance the s-wave pairing significantly when
electron pockets dominate over hole pockets. Finally, as the
245 pattern is very strong in magnetism, we do not think this
state can coexist with the superconducting phase.

We have noted relevant spin-wave calculations done by
other authors36,37 and a study of the magnetic phase diagram
of the 245 vacancy-ordered phase.38 The model used in their
works is the J1-J2-J ′

1-J ′
2 model. Formally speaking, our model

comprises this model by setting J3 = J ′
3 = 0, and the param-

eters chosen in those works are supported by first-principle
calculations while our parameters are chosen based on a
previous fit to the experimental data from an inelastic neutron
scattering on FeTe.26 In the spin-wave calculations in Refs. 36
and 37, the first three branches touch each other in dispersion,
while our dispersion (with the first parameter set) has one
distinct magnon branch and two optical branches separated
from the magnon branch by a finite gap. Additionally, the
band top of the spin-wave dispersion in Ref. 36 is about one
half of our band top. Reference 38 has a thorough discussion of
the magnetic phase diagram with a wide range of parameters.
In the parameter region of J1 < J ′

1 < 0 and J3 = J ′
3 = 0, we

obtain a consistent phase diagram with Fig. 2(b) of their work.
Reference 38 also calculates the phase boundary between the
incommensurate and the block-spin phases, but we are the
first to give an analytic expression of this boundary in terms
of the parameters. In the spin-wave calculation, we have also
obtained the closed-form expression of the spin-wave velocity,
a quantity that may be extracted with some accuracy in inelastic
neutron-scattering experiments.

V. CONCLUSION

In summary, the J1-J2-J3 model provides a natural and
unified understanding for magnetism and vacancy ordering
in iron chalcogenides. The 245 vacancy pattern reduces the
magnetic frustration and achieves the maximal magnetic
energy saving. The reduction of frustration increases the
ordered magnetic moment and strongly increases the magnetic
transition temperature.
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