Neutron scattering studies of spin excitations in superconducting Rb$_{0.82}$Fe$_{1.68}$Se$_2$

Miaoyin Wang,1 Chunhong Li,2 D. L. Abernathy3 Yu Song1, Scott V. Carr1, Xingye Lu1,2 Shiliang Li2, Zahra Yamani4, Jiaping Hu2,5 Tao Xiang2, and Pengcheng Dai1,2,*

1Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
3Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393, USA
4Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratories, Chalk River, Ontario K0J 1J0, Canada
5Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA

(Received 16 January 2012; revised manuscript received 20 June 2012; published 5 July 2012)

We use inelastic neutron scattering to show that superconducting (SC) rubidium iron selenide Rb$_{0.82}$Fe$_{1.68}$Se$_2$ exhibits antiferromagnetic (AF) spin excitations near the in-plane wave vector $Q = (\pi, 0)$ identical to that for iron arsenide superconductors. Moreover, we find that these excitations change from incommensurate to commensurate with increasing energy and occur at the expense of spin waves associated with the coexisting $\sqrt{5} \times \sqrt{5}$ block AF phase. Since these spin excitations cannot come from Fermi surface nesting based on angle resolved photoemission experiments, our results indicate the presence of local moments in SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$ that may have a similar origin as the hourglass-like spin excitations in copper oxide superconductors.

DOI: 10.1103/PhysRevB.86.024502 PACS number(s): 74.25.Ha, 74.20.Rp, 74.70.Xa, 78.70.Nx

I. INTRODUCTION

All parent compounds of high-transition temperature (high-T_c) copper oxide superconductors are antiferromagnetic (AF) Mott insulators characterized by the same local moment Heisenberg Hamiltonian. $^1,^2$ Although static long-range AF order in the parent compounds is suppressed upon electron or hole-doping to induce superconductivity, 3 short-range spin excitations persist in the doped materials and are believed to be associated with local moments important for the mechanism of superconductivity. 4 For iron-based superconductors, 5 the situation is more complicated. While superconductivity in iron pnictides also appears upon electron or hole-doping of their parent compounds, 6 the undoped materials are semimetals with Fermi surfaces composed of hole and electron pockets near the Fermi level. 7 Since Fermi surface nesting between the hole and electron pockets can give spin-density wave order at wave vector $Q = (\pi, 0)$, the observation of such AF order in undoped materials 8 suggests that antiferromagnetism is due to Fermi surface nesting of itinerant electrons. 9 Moreover, inelastic neutron scattering experiments on single crystals of superconducting (SC) iron pnictides have found a resonance at $Q = (\pi, 0)$ in the spin excitations spectra, 7 thus providing further evidence that superconductivity is due to sign reversed quasiparticle excitations between the hole and electron pockets. $^1,^2$ Therefore, the microscopic origin of magnetism and superconductivity in iron pnictides appears to be fundamentally different from that of the copper oxides. 3

In the case of alkaline iron selenide superconductors A$_x$Fe$_{1+y}$Se$_2$ (A = K, Rb, Cs), $^{13-16}$ their parent compounds are insulators near $x = 0$ 15,16 and form a $\sqrt{5} \times \sqrt{5}$ block AF structure with an Fe vacancy order [Fig. 1(a)]. $^{12-21}$ Completely different from the collinear AF structure of the iron pnictides, 5 further experiments on SC A$_x$Fe$_{1+y}$Se$_2$ revealed only electron Fermi surfaces near M(π, 0)/M(0, π) points and no hole Fermi surface near Γ(0, 0). $^{22-24}$ Therefore, there is no Fermi surface nesting between Γ(0, 0) and M(0, π)/M(0, π) points, which can give AF spin excitations at $Q = (\pi, 0)$ [Fig. 1(c)]. 25 Instead, the nesting properties between the M(0, π)/M(0, π) electron pockets with d-wave symmetry can produce a broad plateau-like maximum around $Q = (\pi, \pi)$ that is bordered by two peaks at $Q \approx (0, 0.625\pi)$ and $Q \approx (0.625\pi, \pi)$. 26 Although the recent discovery of the neutron spin resonance in SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$ at wave vector $Q = (\pm \pi, \pm 0.5\pi)$ [Fig. 1(d)] 27,28 is consistent with this picture, 26 it remains unknown whether there are also spin excitations near wave vectors $Q = (\pi, 0)$ not associated with the Fermi surface nesting.

In this article, we use neutron scattering to map out the low-energy spin excitations in SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$ $[T_c = 32$ K; Fig. 1(f)]. In addition to confirming the neutron spin resonance at $Q = (\pm \pi, \pm 0.5\pi)$ 27,28 we find evidence for incommensurate spin excitations near wave vector $Q = (\pi, 0)$ that are absent in insulating Rb$_{0.89}$Fe$_{1.55}$Se$_2$ [Figs. 1(b) and 1(d)] 29 With increasing energy, the incommensurate spin excitations disperse inward to $Q = (\pi, 0)$ and disappear above $E = 30$ meV (Figs. 2 and 3). A comparison of spin excitations in the SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$ with spin waves in the insulating Rb$_{0.89}$Fe$_{1.55}$Se$_2$ 29 reveals that the intensity gain of the $Q = (\pi, 0)$ excitations is at the expense of spin waves associated with the $\sqrt{5} \times \sqrt{5}$ AF phase (Figs. 4 and 5). Since electron-hole pocket excitations are impossible between Γ(0, 0) and M(0, π)/M(0, π) points, $^{22-24}$ our results suggest the presence of local moments. 30 Moreover, the dispersion of the $Q = (\pi, 0)$ excitations is similar to that of copper oxide superconductors 31,32 and insulating cobalt oxide 33 thus suggesting the possible presence of dynamic stripes. 34

II. EXPERIMENTAL RESULTS

We have performed inelastic neutron scattering experiments on the ARCS chopper spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory, using identical...
conditions as previous work on spin waves in the insulating Rb_{0.82}Fe_{1.68}Se_{2}. Figures 1(a) and 1(b) show the block AF phase and the positions of the AF peaks in reciprocal space, respectively. We define the wave vector \(\boldsymbol{Q} \) at \((q_x, q_y, q_z)\) as \((H_b, K_a, L_m) = (q_x a_0/2\pi, q_y a_0/2\pi, q_z c_0/2\pi)\) rlu, where \(a_0 = 5.48\) Å and \(c_0 = 14.69\) Å are the orthorhombic lattice parameters similar to iron pnictides. In this notation, the neutron spin resonance \((\pm 1, 0, 0)\) occurs at \(Q = (\pm 1, \pm 0.5, \pm 0.5)\) rlu, while the \(1 \rightarrow 0\) transition. The susceptibility measurement indicates \(T_c = 32\) K.

From earlier work on \(A_1\text{Fe}_{1.6+x}\text{Se}_2\), we know that superconductivity coexists with the block AF order. Therefore, one should expect spin waves in SC Rb_{0.82}Fe_{1.68}Se_{2} from the block AF phase. Figure 2 summarizes the two-dimensional constant-energy \((E)\) images of spin excitations in the \([H_b, K_a]\) surface nesting gives scattering at \(Q = (\pm 1, 0, \pm 0.5)\) rlu [Figs. 1(c) and 1(d)]. We coaligned \(~6\) grams of SC single crystals Rb_{0.82}Fe_{1.68}Se_{2} grown by the self-flux method (with mosaic of \(~6\)°), where the chemical composition was determined by inductively coupled plasma analysis. Figure 1(f) shows the temperature dependence of the susceptibility measurements confirming \(T_c = 32\) K. To ensure that the neutron spin resonance at \(Q = (\pm 1, 0, 5)\) and \(E = 14\) meV does not fall into the detector gaps on ARCS, we rotated the co-aligned samples counter-clockwise by \(~27\) degrees. The incident beam energies were \(E_i = 35.80\) meV with \(E_i\) parallel to the \(c\) axis. The scattering was normalized to absolute units using a vanadium standard.

From earlier work on \(A_1\text{Fe}_{1.6+x}\text{Se}_2\), we know that superconductivity coexists with the block AF order. Therefore, one should expect spin waves in SC Rb_{0.82}Fe_{1.68}Se_{2} from the block AF phase. Figure 2 summarizes the two-dimensional constant-energy \((E)\) images of spin excitations in the \([H_b, K_a]\)
plane for insulating and SC \(\text{Rb}_0.82 \text{Fe}_{1.68} \text{Se}_2 \). Since the subtle changes in the insulating and SC samples\(^{8-24}\) are not expected to much affect phonons in these materials, we assume that the new dispersive features in \(\text{Rb}_0.82 \text{Fe}_{1.68} \text{Se}_2 \) are spin excitations not associated with the insulating phase. Figures 2(a), 2(c), 2(e), and 2(g) show images of spin waves at energies \(E = 8 \pm 2, 12 \pm 2, 20 \pm 2, \) and \(26 \pm 2 \) meV, respectively, for the insulating \(\text{Rb}_0.89 \text{Fe}_{1.58} \text{Se}_2 \).\(^{28}\) They are centered at the expected AF wave vectors with no observable features at \(Q = (1, \pm 0.5) \) and \(Q = (1, 0) \).\(^{29}\)

Figures 2(b), 2(d), 2(f), and 2(h) plot images of the identical constant-energy cuts for the SC \(\text{Rb}_0.82 \text{Fe}_{1.68} \text{Se}_2 \) at \(T = 6 \) K. In addition to the usual spin waves from the block AF structure, we find new features near \(Q = (\pm 1, 0) \) and \(Q = (0, \pm 1) \). At \(E = 8 \pm 2 \) meV, there are four incommensurate peaks centered at \(Q \approx (-1 \pm 0.14, \pm 0.1) \) [Fig. 2(b)]. Upon increasing energies to \(E = 12 \pm 2 \) [Fig. 2(d)] and \(20 \pm 2 \) meV [Fig. 2(f)], the excitations become approximately centered at \(Q = (\pm 1, 0) \). Finally, at \(E = 26 \pm 2 \) meV, they disappear at \(Q = (\pm 0.5) \) and spin waves in the SC \(\text{Rb}_0.82 \text{Fe}_{1.68} \text{Se}_2 \) and insulating \(\text{Rb}_0.88 \text{Fe}_{1.58} \text{Se}_2 \) become indistinguishable [Figs. 2(g) and 2(h)]. Figures 3(a)–3(d) show the expanded view of the spin excitations near \(Q = (1, 0) \) at different energies. At \(E = 8 \pm 2 \) meV, we see four distinct peaks [Fig. 3(a)]. At \(E = 12 \pm 2 \) meV, the excitations become cross-like near \(Q = (1, 0) \) and one can also see the resonance centered at \(Q = (-1, \pm 0.5) \) [Fig. 3(b)]. For \(E = 16 \pm 2 \) meV, the excitations are well centered at \(Q = (-1, 0) \) [Fig. 3(c)]. Finally, at \(E = 26 \pm 2 \) meV, we find only spin waves from the block AF phase centered around the expected AF positions [Fig. 3(d)].

To directly compare excitations near the antiferromagnetic wave vector \(Q = (1, 0) \) for the SC \(\text{Rb}_0.82 \text{Fe}_{1.68} \text{Se}_2 \) and insulating \(\text{Rb}_0.88 \text{Fe}_{1.58} \text{Se}_2 \), we carried out identical cuts for these two samples in absolute figures. Figures 4(a) and 4(c) show comparisons at \(E = 8 \pm 2 \) and \(14 \pm 2 \) meV; there are clear excitations for the superconducting sample that are much weaker in the insulating sample. At \(E = 30 \pm 2 \) meV, there are no observable differences for these two samples. Figures 4(b), 4(d), and 4(f) show Bose population corrected \(\chi''(Q, \omega) \) for spin waves from the \(\sqrt{5} \times \sqrt{5} \) AF block phase at 6, 35, and 250 K with spin-wave energies of \(b) E = 12 \pm 2, \(d) 20 \pm 2, \) and \(f) 34 \pm 2 \) meV.
we find that $\chi''(Q,\omega)$ of the spin waves from the block AF phase are temperature independent between 10 and 250 K. This is expected since spin waves are bosons and should follow the Bose factor below T_N (Fig. 4). To see if superconductivity has any effect on spin waves of the block AF phase, we show in Figs. 5(b), 5(d), and 5(f) $\chi''(Q,\omega)$ for SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$ and insulating Rb$_{0.80}$Fe$_{1.95}$Se$_2$. While the spin wave intensity at $E = 10 \pm 2$ and 20 ± 2 meV in the superconductor are lower than that of the insulator, it becomes similar at $E = 34 \pm 2$ meV. To quantitatively determine the differences between the intensity gain near $Q = (-1,0)$ with intensity loss of the AF spin waves in superconductor compared with that of the insulator, we plot in Fig. 5(g) the intensity ratio $\chi''(Q,\omega)$ of spin waves in superconductor compared with that of the insulator, we plot in Fig. 5(h) the intensity ratio of SC and insulating samples (SC/NSC) as black squares [yellow area in Fig. 5(h)] and orange circles [yellow plus green areas in Fig. 5(b)], respectively. We see that the spin wave intensity loss below ~ 30 meV is approximately compensated by an intensity gain from excitations around $(-1,0)$.

Finally, to confirm the neutron spin resonance near $E = 14$ meV at $Q = (-0.5 \pm 0.1, 0 \pm 0.1)$ in our SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$, we carried out constant-Q and constant-energy cuts to the data in Fig. 3(b) below and above T_c. Figure 6(a) shows the $S(Q,E)$ for integrated wave vectors $Q = (-0.5 \pm 0.1, 0 \pm 0.1)$ at 6 and 35 K. The temperature difference plot (6–35 K) in Fig. 6(b) has a clear peak at $E = 14$ meV, thus confirming the resonance below T_c. Figures 6(c) and 6(e) show constant-energy cuts along the two different high symmetry directions (see insets) below and above T_c. The temperature difference plots show well-defined peaks at the expected wave vector. Figure 1(e) compares the strength of the spin waves from the block AF structure in insulating and SC samples, the (1,0) spin excitations, the resonance, and spin waves of BaFe$_2$As$_2$ near $E = 14$ meV.

III. DISCUSSIONS AND CONCLUSIONS

The discovery of spin excitations near the ($\pi,0$) wave vector and their dispersion in the SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$ have several important implications. First, since ARPES experiments reveal that SC $A_yFe_{1.61}Se_2$ have no hole-like Fermi surface at
The results suggest that superconductivity and metallic phase are compensated by spin waves in the AF block phase. These results suggest that localized resonance most likely arising from Fermi surface nesting and itinerant electrons, these results suggest that localized moments and itinerant electrons are both important ingredients for magnetism in alkaline iron selenide superconductors. Second, the observation of low-energy incommensurate spin excitations and its inverse dispersion are reminiscent of the spin excitations for copper oxide superconductors and insulating La$_2$-Sr$_x$CoO$_4$. This suggests that the ($\pi, 0$) spin excitations stem from strongly correlated electronic physics and may be associated with dynamic stripes. Third, the reduction in the low-energy spin wave intensity for the SC phase in the SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$ and the concurrent appearance of the incommensurate spin excitations near $Q = (\pi, 0)$ indicate that spin excitations in superconductors are compensated by spin waves in the AF block phase. These results suggest that superconductivity and metallic phase are related to the insulating $\sqrt{5} \times \sqrt{5}$ block AF insulating phase. If the SC phase in Rb$_{0.82}$Fe$_{1.68}$Se$_2$ mesoscopically coexists with the block AF phase, a striped phase may form on the interface region of the block AF phase and the SC phase due to the interaction between local moments and itinerant electrons. The latter can be viewed as dopants to a Mott insulator phase and naturally result in a stripe phase as in the case of copper oxides. Since neutron is a bulk probe, we cannot conclusively determine whether the phase from which the ($\pi, 0$) spin excitations arise is superconducting or not.

In summary, we have discovered that the SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$ has spin excitations near the ($\pi, 0$) wave vector that is disallowed in the Fermi surface nesting picture. Although such excitations do not appear to be directly coupled to superconductivity, its intensity gain in the SC sample is at the expense of spin-wave intensity reduction of the insulating phase. These results suggest the presence of local moments in the SC Rb$_{0.82}$Fe$_{1.68}$Se$_2$. In addition, the ($\pi, 0$) spin excitations in the SC A$_1$Fe$_{1.6+\delta}$Se$_2$ are coupled to spin waves from the block AF phase in the same sample.

ACKNOWLEDGMENTS

We thank Qimiao Si and Leland Harriger for helpful discussions, M. B. Stone for ARCS experiments, and R. Zhang for sample growth at IOP. The work at UTK is supported by the US NSF-DMR-1063866 and NSF-OISE-0968226. Work at IOP is supported by the MOST of China 973 program (Grant No. 2012CB821400) and by NSFC-51002180. ORNL neutron scattering facilities are supported by the U.S. DOE, Division of Scientific User Facilities.

39. Wei Li, Hao Ding, Peng Deng, Kai Chang, Canli Song, Ke He, Lili Wang, Xucun Ma, Jiang-Ping Hu, Xi Chen, and Qi-Kun Xue, Nat. Phys. 8, 126 (2012).

