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We measure magnetic quantum oscillations in the underdoped cuprates YBa2Cu3O6þx with x ¼ 0:61,

0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained

suggest that the Fermi energy in the cuprates has a maximum at hole doping p � 0:11–0:12. On either

side, the effective mass may diverge, possibly due to phase transitions associated with the T ¼ 0 limit of

the metal-insulator crossover (low-p side), and the postulated topological transition from small to large

Fermi surface close to optimal doping (high p side).
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One of the significant landmarks in the study of the
‘‘High-Tc’’ cuprates is the observation of Shubnikov–
de Haas and de Haas–van Alphen oscillations [1–7] in
high magnetic fields. Such magnetic quantum oscillations
(MQOs) are the signature of a Fermi surface (FS), and their
temperature (T) and field (B) dependence suggest a rela-
tively conventional Fermi liquid [1–5,7,8], rendering some
theories of the cuprate normal state untenable [9]. Though
there are attempts to explain the MQOs using more exotic
models [10–12], these seem unable to describe aspects of
the data (e.g., multiple MQO frequencies, MQOs periodic
in 1=B, realistic effective masses).

However, published MQOs cover only a restricted re-
gion of hole doping p. In particular, data on underdoped
YBa2Cu3O6þx correspond to 0:49 � x � 0:54 (0:0925 �
p � 0:10) [1,2,5,7]. As this is also the x range blighted by
the ortho-I/ortho-II structural instability [13], it is natural
ask whether the observed FSs are a consequence of, or
related to, this phase separation. Moreover, the only
higher-p data for the underdoped side of the superconduct-
ing dome are for YBa2Cu4O8 (p � 0:125–0:14 [3,4]).
These may be untypical because of the different crystal
structure. Here we therefore report MQOs in the under-
doped cuprates YBa2Cu3O6:61 (p � 0:11) and
YBa2Cu3O6:69 (p � 0:125). We find that both exhibit a
dominant MQO frequency F � 550–570 T, similar to the
� frequency observed in the 0:49 � x � 0:54 samples
[1,2,5,7,8]. On close examination, the p � 0:11 sample
exhibits additional MQO frequencies, some attributable
to warping of the FS due to a finite interlayer transfer
integral. Effective masses m� found for both compositions
are less than 2:0me, lighter than their equivalent in
YBa2Cu4O8 [3,4].

Single crystals of YBa2Cu3O6:61 and YBa2Cu3O6:69 are
grown and oxygenated as described before [14]. Samples
are polished to sizes 0:3� 0:3� 1:5 mm3, with the long
axis parallel to c. Compositions are inferred by measuring
Tc in a SQUIDmagnetometer, and using the p and x versus
Tc relationships given in Ref. [13]. The MQO experiments
employ the same system as in Ref. [4]; a coil of 8–15 turns
of 44 or 50-gauge Cu wire is wound around the sample, the
planes of the turns roughly perpendicular to c. The coil is
part of a tank circuit driven by either a tunnel-diode
oscillator (TDO) [15] or a proximity-detector circuit
(PDC) [16]; shifts in resonant frequency f are caused by
changes in the skin-depth (normal state) or penetration
depth (superconducting state) [15]. No significant differ-
ences are noted between PDC and TDO data. A heterodyne
system measures f; the oscillator output is mixed down
using two mixer/filter stages to about 1 MHz and the
resulting signal digitized directly at 107 samples=s using
a National Instruments PXI-5105 digitizer. Fields are pro-
vided by the 85 T Multi-shot (MSM) and 60 T Long-pulse
magnets at NHMFL Los Alamos [4,8] and a 65 T short-
pulse magnet at Oxford. The purpose of the range of dB=dt
(�100–15 000 T s�1) is to characterize and eliminate the
effects of sample heating due to induced currents and
dissipative vortex motion [4]. The field is measured using
a pick-up coil calibrated by the belly MQOs of Cu [17].
Four crystals of YBa2Cu3O6:61 and two crystals of
YBa2Cu3O6:69 are studied; results are consistent between
crystals of the same x and between different magnets.
Figure 1 shows data for YBa2Cu3O6:61 and

YBa2Cu3O6:69 measured in the 85 T MSM at T ¼ 1:5 K;
samples are heat-sunk to a sapphire chip and im-
mersed in 4He liquid. Frequencies are obtained by
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Fourier transforming the signal using a moving
time window 20 �s long, and then adding the offset re-
moved by the mixers. The prominent drop in f around 25 T
(x ¼ 0:61) or 35 T (x ¼ 0:69) is attributed to the irrever-
sibility field [4,5]. Above this, features are discerned in the
data, corresponding to Shubnikov–de Haas oscillations in
the conductivity [4,5]. Owing to the proportionality be-
tween change in conductivity and shift in f [15], the
conductivity MQOs give oscillations in f.

We first turn to YBa2Cu3O6:61 for which MQOs are
visible in the raw data (Fig. 1); below, we see that MQOs
are less prominent in YBa2Cu3O6:69 due to a shorter ap-
parent scattering time, �. To make the MQOs more visible,
the slowly-varying background due to the semiclassical
magnetoresistance is removed by subtracting a third-order
polynomial in B. Figure 2(a) shows some resulting MQOs
for YBa2Cu3O6:61; here, random noise from the power
supply of the 85 T MSM [8] is mitigated by averaging
three upsweeps and three downsweeps and then smoothing
using a Savitsky-Golay routine. The resulting data exhibit
MQOs above about 40 T. On Fourier-transformation, the
dominant peak is at F ¼ 570 T [Fig. 2(b)], similar to the
so-called � MQO frequency (500–550 T) in 0:49 � x �
0:54 samples [1,2,5,8] and the dominant frequency in
YBa2Cu4O8 [3,4].

However, in the case of a single extremal FS
cross section, one would expect the MQO amplitude to
grow uniformly with increasing field [18]. The MQOs in
Fig. 2(a) do not do this; they are modulated by what
appears to be a beat frequency, a phenomenon noted other

cuprates [2,4,19]. This is also seen in the Fourier transform
[Fig. 2(b)], where the peak at 570 T is obviously asym-
metric and may be fitted by two overlapping Gaussians
centered on 466� 10 and 593� 5 T. The presence of
two relatively closely spaced Shubnikov–de Haas frequen-
cies with similar amplitudes is suggestive of the beats
caused by ‘‘neck and belly’’ oscillations of a quasi-two-
dimensional FS that is warped due to a finite interlayer
transfer integral t?c [2,19]. To model this, we sum two
components of the Lifshitz-Kosevich formula [18,19]
with MQO frequencies F1 and F2, amplitudes a1 and a2,
and phases �1 and �2:

�f ¼
�
a1 cos

�
2�F1

B
þ�1

�

þ a2 cos

�
2�F2

B
þ�2

��
TB�ð1=2Þ

� exp

�
��m�

e�B

��
sinh

�
14:69m�T

B

���1
: (1)

Here m� is the effective mass, and ��1 is an effective
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FIG. 2 (color online). (a) PDC resonant frequency f for a
YBa2Cu3O6:61 crystal after background subtraction to leave the
oscillatory component �f; the trace (thick black curve) is an
average of three magnet sweeps (T ¼ 1:5 K). The thinner red
line is a fit of Eq. (1) for MQO frequencies 589 and 479 T with
� � 0:07 ps. (b) Fourier transform of data in (a) (black thick
curve) using a Hann window; the large peak is centered on 570 T.
The red curve is a sum of two Gaussians (fine green lines) at 466
and 593 T. (c) Plot of MQO amplitude A divided by T versus T;
diamonds are from the upsweep of B and dots from the down-
sweep. The curve is a fit of Eq. (2), giving m� ¼ 1:6� 0:1me.
(d) Residual [i.e., (data)-(fit)] from (a) versus field (black thicker
line). The thinner red curve is a fit of Eq. (1) for a single MQO
with F ¼ 270� 20 T.

26.0

26.1

26.2

26.3

0 10 20 30 40 50 60 70 80

24.9

25.0

25.1

25.2

25.3

25.4

0 1 2 3
0

20

40

60

80

50 55 60 65 70
-10

-5

0

-6
-4
-2
0

M
 (arb. units)M

 (
ar

b.
 u

ni
ts

)

Temperature, T (K)

F
requency (M

H
z)F

re
qu

en
cy

 (
M

H
z)

Magnetic Field, B, (T)

(a)

 

 

(b)

 

 Time (s)

 

B
 (

T
)

 

 

 

(c)

 

 

FIG. 1 (color online). (a) PDC frequency f versus field B for
single crystals of YBa2Cu3O6:69 (upper blue trace) and
YBa2Cu3O6:61 (lower red trace); T ¼ 1:5 K for both. The drop
in f corresponds to the irreversibility field [4,5]. MQOs are
visible at high fields for YBa2Cu3O6:61. (b) B versus time t
profiles for the 60 T Long-pulse and 85 T Multi-shot magnets.
(c) SQUID data for the two samples from (a), yielding Tc.
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scattering rate; we assume that m� and � are the same for
the neck and belly oscillations. The number 14.69 is valid
for B in Tesla and T in Kelvin. Independently, m� may be
constrained by the way in which the amplitude of an
individual MQO, or the Fourier amplitude of a transform
over a restricted field range varies with T;

A

T
/
�
sinh

�
14:69m�T

B

���1
; (2)

where A is the amplitude. All of the fits [e.g., Fig. 2(c)] of
individual MQOs or Fourier amplitudes yielded m� values
in the range 1:5–1:7me, irrespective of sample, field range
or sweep rate, leading us to m� ¼ 1:6� 0:1me. Having
constrained m�, a fit of Eq. (1) to the data [Fig. 2(a)] yields
MQO frequencies 589� 5 T and 479� 5 T, and � �
0:07 ps. These values are close to those obtained in the
two-Gaussian fit of the transform in Fig. 2(b).

Beside the peak at 570 T in the transform [Fig. 2(b)],
there is a feature at F � 250 T. This appears to correspond
to an actual MQO series, as is seen by subtracting the fitted
Eq. (1) in Fig. 2(a) from the data. The residual [Fig. 2(d)] is
oscillatory, with a direct fit yielding F ¼ 270� 20 T,
close to the value suggested by the peak in the Fourier
transform [20]. Unfortunately, the MQOs are too poorly
defined to permit estimates of m� or �.

To summarize for YBa2Cu3O6:61, our data suggest three
FS cross sections, with MQO frequencies 270, 479, and
589 T; other peaks in the transform at higher frequencies
[Fig. 2(b)] are attributable to harmonics of these [21]. The
479 and 589 T MQOs are likely the neck and belly oscil-
lations of a warped quasi-two-dimensional FS, with m� ¼
1:6� 0:1me; this is probably the equivalent of the domi-
nant � frequency in other underdoped cuprates [1,2,5,8].
The frequency difference, �F � 110 T, between neck and
belly oscillations suggests [19] an average interlayer trans-
fer integral t?c ¼ @�F=ð4m�Þ ¼ 2:0� 0:1 meV for
YBa2Cu3O6:61, higher than the values 1.4–1.7 [22] ob-
tained for YBa2Cu3O6þx (x ¼ 0:51, 0.54) [2,19]. This
increase in t?c with p is not unexpected; the lattice parame-
ter c declines with p [13].

Figure 3(a) shows an example of the MQOs observed in
YBa2Cu3O6:69. In contrast to YBa2Cu3O6:61, where MQOs

appear around 40 T [Fig. 2(a)], the MQOs here are not
distinguishable from the background until about 60 T
[Fig. 3(a)]. The nonsinusoidal appearance of the MQOs
again suggests the presence of more than one frequency,
but sadly, the limited field window over which MQOs are
seen both precludes a ‘‘neck and belly’’ analysis [Eq. (1),
Fig. 2(a)] and limits the resolution of a Fourier transform.
Instead, we plot MQO index versus 1=B in Fig. 3(b) to find
a mean frequency of 550� 20 T [23]. Fitting the MQO
amplitudes versus T for YBa2Cu3O6:69 yields m

� ¼ 1:8�
0:3me, similar to the 1:6� 0:1me for the analogous MQO
frequency in theYBa2Cu3O6:61 [Fig. 2(c)]. A Dingle analy-

sis [i.e., a plot of logeðAB1=2 sinhð14:69m�T=BÞ versus 1=B
[18], where A is the oscillation amplitude] yields � �
0:04 ps, �2 times smaller than that for YBa2Cu3O6:61.
This accounts for the higher fields required to observe
MQOs in YBa2Cu3O6:69. Ref. [24] attributes the dominant
Landau-level broadening to quasistatic spin disorder also
observed in neutron experiments and parameterized by a
correlation length � [25–27]. It is notable that � decreases
with increasing p [25–27], and this may account for the
shorter � of the x ¼ 0:69 samples.
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FIG. 3 (color online). (a) PDC resonant frequency for a
YBa2Cu3O6:69 crystal after background subtraction to leave the
oscillatory component �f; the trace is a smoothed average of
three magnet sweeps (T ¼ 1:5 K). (b) Oscillation index versus
reciprocal magnetic field for the MQOs in (a) (points); dips in
�f are indexed by integers and peaks by half integers. The
straight line is a fit with a gradient of 550� 20 T.
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FIG. 4 (color online). (a) Summary of MQO frequencies ver-
sus p for underdoped cuprates: for YBa2Cu3O6þx, v are from
Ref. [8],e from Ref. [2], and� from this work; Tc and x values
are converted to p using Ref. [13]. YBa2Cu4O8 data from
Refs. [3,4] are squares; the horizontal bar is the spread in p
values given for YBa2Cu4O8 [3,4]. Solid symbols (e.g.,d) show
the dominant (F�) frequency obtained from Fourier analysis;
open symbols are from more detailed analyses [e.g., Figs. 2(a)
and 2(d) or Refs. [2,19]]. (b) Effective mass of the dominant (�)
MQO frequency F� versus p; symbols are the same as in
(a) except e are from Ref. [7]. (c) Fermi energy from F� and
m�; for ps where several values are given, we take the average.
Points are data and the curve is a parabolic fit.
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Figure 4 compares the data obtained here with similar
results from other underdoped cuprates, all of which have a
dominant MQO frequency F� � 500–660 T. Figure 4(a)
shows both F� and other MQO frequencies �1000 T that
have been resolved (this Letter, Refs. [2,19]). If we attrib-
ute F ¼ 540 and 450 T for p � 0:10 [2] and F ¼ 590 and
480 T for p ¼ 0:11 (this work) to the belly and neck
oscillations of the � Fermi pocket, then there seems to
be a trend, smoothly continued by YBa2Cu4O8, for the �
pocket to grow with rising p [28]. It also seems that
samples from the ortho-I-II region are unexceptional, con-
tinuing the trend seen in this work to lower p. The weaker
MQOs with F ¼ 630 T (p ¼ 0:975, 0.10) [2] F ¼ 270 T
(p ¼ 0:11) are qualitatively similar to extra pockets pre-
dicted by FS reconstruction due to various types of sym-
metry breaking; e.g., an incommensurate spin-density
wave [29] produces a plethora of FS sheets, both smaller
and larger than the � pocket, while a pocket with F �
250 T is an explicit prediction of incommensurate d-den-
sity-wave order [30,31]. Meanwhile, the � effective
masses show a ‘‘bowl-shaped’’ dependence on p, with a
minimum at p � 0:11.

To visualize the effect that these changes have on the
carrier system, Fig. 4(c) plots the effective Fermi energy
EF for the � pocket, EF ¼ @F�=m

�, using data from
Figs. 4(a) and 4(b). It seems that the Fermi energy reaches
a maximum at p � 0:115, but decreases either side of this,
suggesting that m� may diverge at p � 0:087 and p �
0:14, the latter p being poorly constrained by the existing
data [32]. The lower p value suggests the point at which the
metal-insulator transition tends to T ¼ 0 [8,33]. The upper
may signal the topological transition from small to large FS
thought to occur close to optimal doping [4,6], though
experimental confirmation of an unreconstructed FS in
overdoped YBa2Cu3O6þx is as yet lacking. By analogy
with heavy-fermion superconductors [8,34], both of the
m� divergences may represent quantum-critical phase
transitions.

In summary, we report MQO frequencies and effective
masses m� for the underdoped cuprates YBa2Cu3O6þx

with x ¼ 0:61, 0.69, filling in a considerable gap in the
FS versus p diagram. In conjunction with other data, our
results suggest that the Fermi energy reaches a maximum
around p � 0:11–0:12, and collapses on either side due to
divergence of m�. The divergences are perhaps associated
with quantum-critical phase transitions associated with the
T ¼ 0 limit of the metal-insulator transition (low-p side),
and the topological transition from small to large FS close
to optimal doping (high-p side).
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