Longitudinal Spin Excitations and Magnetic Anisotropy in Antiferromagnetically Ordered BaFe$_2$As$_2$

Chong Wang, Rui Zhang, Fa Wang, Huiqian Luo, L. P. Regnault, Pengcheng Dai, and Yuan Li

1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4SPSMS-MDN, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble F-38054, France
5Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

(Received 22 August 2013; published 30 December 2013)

We report on a spin-polarized inelastic neutron-scattering study of spin waves in the antiferromagnetically ordered state of BaFe$_2$As$_2$. Three distinct excitation components are identified, with spins fluctuating along the c axis, perpendicular to the ordering direction in the ab plane and parallel to the ordering direction. While the first two “transverse” components can be described by a linear spin-wave theory with magnetic anisotropy and interlayer coupling, the third “longitudinal” component is generically incompatible with the local-moment picture. It points toward a contribution of itinerant electrons to the magnetism that is already in the parent compound of this family of Fe-based superconductors.

DOI: 10.1103/PhysRevX.3.041036

Among very different classes of materials, including the Fe-based superconductors (FeSCs), the cuprates, and the heavy-fermion compounds, a striking feature of unconventional superconductivity is that it commonly appears close to an antiferromagnetic (AF) phase [1]. Since magnetism may be a common thread for the pairing interaction in unconventional superconductors [2], it is important to determine the microscopic origin of the AF order. For the cuprates, it is well accepted that their Mott-insulating parent compounds have localized moments, and the spin waves can be well described by a Heisenberg model [3–5]. In the case of iron-pnictide families of FeSCs, there is no consensus on the origin of the colinear AF order in the parent compounds [6–9]. On the one hand, the parent compounds of FeSCs are semimetals with hole- and electronlike Fermi pockets at the Brillouin-zone center and zone corners, respectively [Fig. 1(a)] [10–13], and the AF order [Fig. 1(b)] may arise from nesting between the hole and electron Fermi pockets [10], much like the spin-density-wave (SDW) order in chromium [14]. On the other hand, the bad-metal phenomenology of iron pnictides [15] suggests that these materials are near a Mott transition with magnetism arising from localized moments, much like in the cuprates [16–18].

If the AF order in the iron pnictides arises entirely from localized moments on Fe, spin waves from these moments should be purely transverse spin excitations (TSEs), with moments fluctuating perpendicular to the staggered magnetization, keeping an unchanged magnitude. In contrast, if Fermi-surface nesting and itinerant electrons contribute significantly to the AF order, one would expect the presence of longitudinal spin excitations (LSEs) with fluctuating moment sizes [19–22], similar to the LSEs seen in the SDW state of chromium [23]. Although unpolarized inelastic neutron-scattering (INS) experiments have mapped out spin waves in the iron-pnictide parent compounds CaFe$_2$As$_2$ [8,24], BaFe$_2$As$_2$ [25], and SrFe$_2$As$_2$ [26], the spectra can be described by either local-moment [8,25] or itinerant models [21,24,26]. To conclusively determine if itinerant electrons contribute to the magnetism, one needs to perform spin-polarized INS experiments to search for LSEs in the AF ordered state. In spite of considerable efforts in this direction on BaFe$_2$As$_2$ [27] and NaFeAs [28], no clear evidence for LSEs has been found. While the lack of LSE signal has been suggested in the previous spin-polarized INS study on BaFe$_2$As$_2$ [27], the

![FIG. 1. (a) Fermi surface of BaFe$_2$As$_2$, reproduced from Ref. [40] using the band structure from Ref. [42]. Arrows indicate nesting vectors. (b) Spin arrangement and fluctuation directions in the AF phase of BaFe$_2$As$_2$. Coordinate systems for neutron polarization are indicated for two examples Q_1 and Q_2.](image-url)
measurements were carried out on a rather small sample (approximately 1 g) with limited statistics and thus did not allow for a conclusive identification of the LSE above 20 meV.

Here, we present a spin-polarized INS study of BaFe$_2$As$_2$ in the AF phase, where the ordered moments are aligned along the a-axis direction of the orthorhombic structure [Fig. 1(b)]. By using approximately 18 g of coaligned crystals, we are able to overcome the statistical limitation of previous work [27] and identify three distinct spin-excitation components with magnetic moments fluctuating along the three crystallographic axes M_a, M_b, and M_c [Fig. 1(b)]. The latter two TSE components can be quantitatively described by a linear spin-wave model with magnetic anisotropy. The presence of the (hitherto undetected) LSE component M_a, which amounts to about 10% of the low-energy spectral weight, indicates a clear contribution from itinerant electrons. Therefore, itinerant electrons important for superconductivity also contribute to the magnetism in the parent compounds of iron pnictides.

Our high-quality BaFe$_2$As$_2$ single crystals are grown by a self-flux technique [29] and coaligned with reciprocal lattice vectors ($H\,0\,L \equiv H a^* + L c^*$) in the horizontal scattering plane. Here, we use the orthorhombic crystallographic notation, in which the two-dimensional AF wave vector (Q_{ab}) corresponds to $|H| = 1$ (in reciprocal lattice units, r.l.u.), and the AF zone center and boundary along c^* correspond to odd and even integer L values, respectively. Our sample has an AF ordering temperature (T_N) of about 137 K and a mosaic of about 1.2° (Fig. S1 in Ref. [30]). The INS experiment is performed on the triple-axis spectrometer IN22 at the Institut Laue-Langevin, France. Heusler crystals are used as the spin-polarizing monochromator and analyzer, and CryoPAD is used for performing longitudinal polarization analysis. A flipping ratio of about 16 is maintained throughout our experiment. All measurements are performed in the spin-flip (SF) geometry at a temperature of 2 K. In the AF ordered phase, BaFe$_2$As$_2$ forms randomly distributed orthorhombic twin domains rotated 90° apart. We are effectively not sensitive to half of the sample that develops AF order at $(0 \pm 1 \,L)$ since the spin waves at $(1 \,0 \,L)$ are well above the energy range of our measurement [25].

In the conventional coordinate system for the neutron spin polarization (\mathbf{S}), \hat{x} is along the momentum transfer (\mathbf{Q}), \hat{y} is vertical, and \hat{z} is perpendicular to both \hat{x} and \hat{y} [Fig. 1(b)]. Since SF scattering probes magnetic fluctuations perpendicular to both \mathbf{Q} and \mathbf{S}, signals that correspond to fluctuations projected along \hat{y} (σ_y) and \hat{z} (σ_z) can be obtained by two independent methods: $\sigma_y = SF_y - BG = SF_x - SF_y$ and $\sigma_z = SF_z - BG = SF_x - SF_y$, where SF_x denotes SF intensity measured with incident neutron spins along the α direction, and BG is background intensity. Both methods give consistent results in our study. σ_y and σ_z are related to the intrinsic magnetic response via

$$\sigma_z = M_b, \quad \sigma_y = M_c \cos^2 \theta + M_a \sin^2 \theta,$$

where θ is the angle between \mathbf{Q} and a^* [31].

Figures 2(a) and 2(b) display raw data of energy and momentum scans at the AF zone center with $L = 3$. The extracted σ_y and σ_z [Fig. 2(c)] exhibit different energy gaps, consistent with an earlier report [27]. The result of similar measurement and analysis at $L = 1$ is shown in Fig. 2(d). A quantitative comparison between these measurements is presented in Fig. 2(f), where the different $\theta = 23.5^\circ$ and 52.5° (for $L = 1$ and 3, respectively) determine the amount of M_a and M_c contributions to σ_y [Eq. (1)]. The excellent agreement between the σ_y data is consistent with a negligible variation in the magnetic form factor (Fig. S2 in Ref. [30]) and in the instrument resolution from $L = 1$ to 3. The data at $L = 1$, 2, and 3 exhibit different energy responses via σ_y and σ_z.

FIG. 2. (a) Energy scans at $(1 \,0 \,3)$. BG is determined by fitting the $SF_x + SF_y - SF_z$ intensity, which does not contain any magnetic signal, to a linear function of ω. (b) Q scans at $\omega = 22$ meV fitted to a single Gaussian peak. (c),(d) Extracted σ_y and σ_z at $(1 \,0 \,3)$ and $(1 \,0 \,1)$. Meanings of symbols in (a)–(d): Circles are raw data, squares are SF_x, or SF_y minus BG, triangles are SF_x minus SF_y, or SF_z, and empty and filled symbols are measured with final neutron energies $E_f = 30.5$ and 50 meV, respectively. (e) Comparison of σ_y data obtained with $E_f = 24$ and 30.5 meV. (f) Combined data from (c) and (d). The dashed line indicates σ_y at $(1 \,0 \,3)$ after multiplying by a factor of 0.4. Dotted lines indicate maxima of σ_y^*, σ_z. Solid lines in (c)–(f) are guides to the eye.
to $L = 3$. A clear difference is found between the σ_z data apart from the overall intensity change: At $L = 1$, σ_z exhibits a maximum at 16 meV, above which the signal decreases in a fashion similar to the decrease of σ_x above 22 meV. At $L = 3$, while σ_y exhibits a rapid increase between 8 and 14 meV similar to the behavior at $L = 1$, it continues with a “plateaulike” profile to higher energies and reaches a global maximum at around 22 meV. If σ_y consists of only M_y, the data for $L = 1$ and $L = 3$ are expected to be identical after multiplying the former by a factor of 0.44, which accounts for the difference in θ. We find the best agreement between the two data sets below 16 meV by multiplying the $L = 1$ data by 0.40. The normalized σ_y at $L = 1$ [dashed line in Fig. 2(f)] lies below the $L = 3$ data above 18 meV. We attribute this difference to a nonzero contribution from M_a, which, unlike M_y, is expected to increase by a factor of 4 from $L = 1$ to $L = 3$. To further verify this interpretation, we measure at (103) with a smaller $E_F = 24$ meV [Fig. 2(e)]. Indeed, the improved energy resolution (approximately 3.1 meV at $\omega = 20$ meV, compared to approximately 3.9 meV for $E_F = 30.5$ meV) leads to a clearer separation of the M_y and M_a components. These results establish the presence of an M_a contribution to the total magnetic response at the AF zone center.

BaFe$_2$As$_2$ consists of FeAs layers separated by Ba. The magnetic coupling J_c between neighboring layers gives rise to a spin-wave dispersion along c^*, with a saddle point at the AF zone boundary where J_c can be best determined. In a recent unpolarized INS measurement at the AF zone boundary [32], a substantially smaller J_c is found than that which was previously inferred [8,25]. Spin-polarized measurements have not been attempted at the AF zone boundary since this refined study. In addition to the search for LSEs, such measurements provide a stringent test of spin-wave models for describing the TSEs, with additional constraints on the model parameters.

Figure 3 displays the extracted σ_y and σ_z at the AF zone boundaries. For $L = 2$, measurements with different E_F are combined to satisfy the scattering kinematic constraint for the extended energy range. Additional tests (Fig. S3 in Ref. [30]) show no evidence for a distortion of data due to instrument resolution. The results are qualitatively similar to those at the AF zone center: (1) At $L = 2$, the maximum of σ_z occurs at a higher energy than σ_y, and both energies are higher than the corresponding values at $L = 1$. (2) σ_z are nearly identical at $L = 2$ and $L = 4$. (3) σ_y reaches its maximum at a higher energy at $L = 4$ than at $L = 2$. From $L = 2$ to $L = 4$, one expects a decrease by 56% in the contribution of M_c and an increase by 74% in the contribution of M_d. The data in Fig. 3(b) are thus consistent with maxima of M_c and M_d contributions at around 26 and 30 meV, respectively.

To start a quantitative discussion, we first plot in Fig. 4 the intrinsic magnetic responses at the AF zone center and

![Graph](image1)

FIG. 3. (a) σ_z and (b) σ_y at AF zone boundaries (see Fig. S3 in Ref. [30] for the raw data). The meanings of symbols are the same as in Fig. 2. Solid lines are guides to the eye.

![Graph](image2)

FIG. 4. Intrinsic magnetic responses (see Fig. 1 for the definition) calculated from the interpolated data in Figs. 2 and 3.
their values at the AF zone boundary are about 30% smaller than at the zone center. The latter observation is expected because in linear spin-wave theory, the intensity of low-energy excitations is inversely proportional to the energy. However, as has been pointed out by Qureshi et al. [27], the equal amplitudes of M_{\parallel} and M_{\perp}, despite their energy difference, are inconsistent with the linear spin-wave theory and might indicate a necessity of resorting to more sophisticated calculations that also include itinerant electrons. Indeed, a clear LSE M_{\parallel} component is found at both the AF zone center and the zone boundary at roughly the same energies as M_{\perp}, and it amounts to about 10% of the low-energy spectral weight. To our knowledge, our observation of a significant M_{\parallel} signal is the first direct evidence of a contribution from itinerant electrons to the spin excitations in a FeSC parent compound.

Comparing our data to the previous work by Qureshi et al. [27], the results at $L = 1$ and 3 are fully consistent, but the measurement precision above 20 meV is substantially improved in our study: The statistics are better because of the much larger sample mass, and we utilize different scattering configurations with $E_f = 24$, 30.5, and 50 meV (Fig. 2) as further consistency checks. These experimental improvements turn out to be crucial for the detection of M_{\parallel}. For comparison, we note that while the data at $Q = (1\ 0\ 5)$ reported in Ref. [27] are consistent with the presence of an M_{\parallel} signal at the AF zone center (Fig. 5), the poor statistics of the data due to small sample masses did not allow the authors to reach this conclusion. Our measurements reveal an M_{\parallel} signal at the AF zone boundary as well. Such measurements at the AF zone boundary were not attempted in Ref. [27].

We consider the following Heisenberg Hamiltonian [30] for a quantitative description of the TSE:

$$
H = \sum_{r} [J_{1a} \mathbf{S}_r \cdot \mathbf{S}_{r+\hat{z}} + J_{1b} \mathbf{S}_r \cdot \mathbf{S}_{r+\hat{\gamma}} + J_{2} (\mathbf{S}_r \cdot \mathbf{S}_{r+\hat{\gamma}} + \mathbf{S}_{r} \cdot \mathbf{S}_{r-\hat{\gamma}}) - D_{x}(S_{r}^{x})^{2} - D_{y}(S_{r}^{y})^{2} + J_{c} \mathbf{S}_{r} \cdot \mathbf{S}_{r+\hat{\xi}}],
$$

where J_{1a} and J_{1b} are the nearest-neighbor interactions along the a and b directions, respectively, J_{2} is the next-nearest-neighbor interaction, and J_{c} is the interlayer coupling. D_{x} and D_{y} denote the single-ion anisotropy. In Table I, we list the expressions for the spin-wave energies. The exchange coupling parameters J_{1a}, J_{1b}, and J_{2} have been determined from time-of-flight INS measurement [25]. Our data allow us to determine the remaining three parameters with four constraints. The fitted $S_{J_{c}}$ value (Table I) is consistent with the report by Park et al. [32], taking into account the slightly different criteria of defining the spin-wave energies, and SD_x and SD_y are consistent with the report of Qureshi et al. [27]. Our experimental result can also be described by exchange anisotropy instead of single-ion anisotropy [30], but since the two types of anisotropy give nearly identical spin-wave dispersions, they cannot be distinguished by INS measurements.

To understand the physical origin of the LSEs, we first note that the AF order in BaFe$_2$As$_2$ is commensurate. This order is different from the incommensurate SDW order in chromium, and it precludes an interpretation of the LSEs as phason modes [33]. Another possible form of LSEs in itinerant antiferromagnets is the amplitude mode [19]. The lowest energy required to create such excitations occurs at the AF wave vector, consistent with our finding, and it is equal to twice the energy gap ($2\Delta_{SDW}$) between the magnetically split bands [19–22,34]. In the AF ordered phase, optical measurements reveal $q = 0$ interband transitions at 45 and 110 meV that possibly indicate gap opening [35,36], but photoemission studies show a complicated band reorganization [12,13,37] without a clear gap opening at the Fermi level [13]. Since the excitations relevant to our INS data occur at finite $q = Q_{AF}$ with $L = 0$ or 1, the correspondence between our data and $2\Delta_{SDW}$ values inferred from optical measurements is not obvious, especially since the band structure exhibits a finite k_z dependence [38]. The similar energies of M_{a} and M_{b} (Fig. 4) imply a connection between the energy scales of the itinerant and the localized electron systems. The fact that we do not observe a clear decrease of M_{a} up to the

Fig. 5. σ_s at $(1\ 0\ 5)$ calculated from M_{a} and M_{b} in Fig. 4, in comparison with data reported by Qureshi et al. [27] after normalizing by the σ_s values of the two experiments.
highest energy of our measurements (Fig. 4) is consistent with the expectation that the observed M_d is at the bottom of a LSE continuum [20,22,34]. Finally, we note that the energy of M_d at the AF zone center is consistent with a transient optical response frequency at the verge of AF ordering [39].

Our result is compatible with the notion that the low-energy spin excitations in the iron pnictides are affected by itinerant carriers, while the high-energy excitations are primarily TSEs arising from localized moments [40,41]. It would be interesting to extend the spin-polarized measurements to higher energies to determine the evolution of the LSEs. The successful description of our data by the spin-wave theory demonstrates the validity of the local-moment picture for describing the TSEs down to the lowest energy. From previous work [27], we know that the large in-plane and c-axis spin anisotropy disappears above T_N. In spin-polarized measurements on NaFeAs, there is evidence for in-plane spin-excitation anisotropy in the paramagnetic orthorhombic phase [28], similar to the spin-excitation anisotropy in the tetragonal phase of superconducting BaFe$_{1.904}$Ni$_{0.096}$As$_2$ [31]. It would clearly be interesting to determine how the LSE and TSE signals change above T_N in BaFe$_2$As$_2$.

In summary, we have discovered a LSE M_d signal and determined the TSE M_b and M_c components to a high precision at both the AF zone center and the zone boundary in an iron-pnictide parent compound. Since the M_d component in nearly optimally electron-doped superconductor BaFe$_{1.903}$Ni$_{0.096}$As$_2$ changes dramatically across T_c [31], the presence of such a signal in the undoped BaFe$_2$As$_2$ suggests that itinerant electrons, which are important for superconductivity, also contribute to the magnetism in the parent compounds of iron pnictides.

We wish to thank Z.-Y. Weng, D.-X. Yao, and Y.-Z. You for stimulating discussions. Work at Peking University is supported by the NBRP of China (No. 2013CB921903) and the NSF of China (No. 11374024). Work at IOP, CAS, is supported by the NBRP of China (No. 2011CB900110 and No. 2012CB821400) and the NSF of China (No. 11374011 and No. 91221303). H. L. and R. Z. acknowledge Project No. 2013DB03 supported by NPL, CAEP. Work at Project No. 2013DB03 supported by the U.S. NSF DMR-1063866 and NSF OISE-0968226.

WANG et al.

PHYS. REV. X 3, 041036 (2013)

