
Article https://doi.org/10.1038/s41467-024-50856-2

Conventional superconductivity in the
doped kagome superconductor
Cs(V0.86Ta0.14)3Sb5 from vortex lattice
studies

Yaofeng Xie 1,9, Nathan Chalus 2,9, Zhiwei Wang 3,4,5,9, Weiliang Yao1,
Jinjin Liu3,4, Yugui Yao 3,4,5, Jonathan S. White 6, Lisa M. DeBeer-Schmitt 7,
Jia-Xin Yin 8, Pengcheng Dai 1 & Morten Ring Eskildsen 2

A hallmark of unconventional superconductors is a complex electronic phase
diagram where intertwined orders of charge-spin-lattice degrees of freedom
compete and coexist. While the kagome metals such as CsV3Sb5 also exhibit
complex behavior, involving coexisting charge density wave order and
superconductivity, much is unclear about the microscopic origin of the
superconducting pairing. We study the vortex lattice in the superconducting
state of Cs(V0.86Ta0.14)3Sb5, where the Ta-doping suppresses charge order and
enhances superconductivity. Using small-angle neutron scattering, a strictly
bulk probe, we show that the vortex lattice exhibits a strikingly conventional
behavior. This includes a triangular symmetrywith a period consistent with 2e-
pairing, a field dependent scattering intensity that follows a London model,
and a temperature dependence consistent with a uniform superconducting
gap. Our results suggest that optimal bulk superconductivity in
Cs(V1−xTax)3Sb5 arises from a conventional Bardeen-Cooper-Schrieffer
electron-lattice coupling, different from spin fluctuation mediated uncon-
ventional copper- and iron-based superconductors.

In conventional Bardeen-Cooper-Schrieffer (BCS) superconductors,
the electron-lattice coupling leads to the formation of coherent (2e)
Cooper pairs and the opening of an isotropic s-wave gap at the Fermi
level1. In comparison, a key signature of unconventional super-
conductivity in materials such as copper oxides and iron-pnictides is
that the pairingmay bemediated by spin fluctuations2,3 and associated
with intertwined charge-spin-lattice degrees of freedom4. The

discovery of superconductivity in the layered kagome AV3Sb5 (A =K,
Rb, Cs) metals5–7 is interesting because the superconducting state
develops in the presence of a charge density wave (CDW)8–13, and the
competition between these two ordered states may give rise to
unconventional superconductivity14–18. However, no spin fluctuations
are reported, thus raising the question of whether these materials are
conventional BCS or unconventional superconductors like cuprates
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and iron pnictides. From pressure and Ta-doping dependence of the
Cs(V1−xTax)3Sb5 phase diagram, it is clear that CDW order competes
with superconductivity, and optimal superconductivity of Tc= 5.3 K
appears around Cs(V0.86Ta0.14)3Sb5 with vanishing CDW order19,20.

The majority of experimental evidence in the AV3Sb5 materials
indicates singlet s-wave pairing with a nodeless but possibly aniso-
tropic superconducting gap19,21–23. Furthermore, multiband super-
conductivity with a large difference in the gap size on different Fermi
surface sheets has been reported12,15,22–25. An experimental determina-
tion of electron-lattice coupling strength supports conventional BCS
superconductivity26, although there are questions about whether the
relation between the gap and critical temperature is consistent with
weak coupling14. There are several reports of broken time-reversal
symmetry (BTRS) both in the normal state8,27–29 as well as the super-
conducting state30–32, although it is not observed consistently in all
experiments23,33,34. In addition, possible Majorana bound states were
observed in scanning tunneling spectroscopy studies9. Finally, a tran-
sition from conventional 2e-pairing towards (vestigial) 4e- and 6e-
pairing35 has been reported upon heating towards the transition to the
normal state36–40.

To determine the microscopic origin of superconductivity in
AV3Sb5, it is critical to separate the effects of the CDW as this may be
associated with an electronic nematic phase and affect the electron
pairing41,42. Here, we report on small-angle neutron scattering (SANS)
studies of the vortex lattice (VL) induced by an appliedmagnetic field in
Cs(V0.86Ta0.14)3Sb5 where charge ordering is suppressed19,20. The vor-
tices produce singularities in the order parameter and may be used as
probes of the superconducting state in the hostmaterial43,44. Our results
indicate a highly conventional bulk superconducting state, and thus

suggest that the reported exotic behavior in other members of the
AV3Sb5 family of superconductors are not relevant to the microscopic
origin of superconductivity. Importantly, the SANS technique provides
information about the bulk superconducting state, whereas more exo-
tic phenomena such as BTRS may occur only at the sample surface.

Results
Vortex lattice imaging
The sample used for the SANS experiments, shown in Fig. 1a, consisted
of a mosaic of co-aligned Cs(V0.86Ta0.14)3Sb5 single crystals. Two SANS
experiments (#1/2) were performed, exploring different temperature
andfield ranges as indicated in thephasediagram inFig. 1b. In all cases,
themagneticfieldwas applied perpendicular to the six-fold symmetric
(kagome) lattice planes. Figures 1c–e shows VL diffraction patterns for
Cs(V0.86Ta0.14)3Sb5 at three different applied magnetic fields. The sys-
tem was prepared by a field cooling to the measurement temperature
from above Tc, followed by a damped field oscillation with an initial
amplitude of 5% of the measurement field. As witnessed by the well-
defined defined Bragg peaks, this produces an ordered VL, which is
consistent with weak pinning45.

A triangular VL is observed at all fields and temperatures as
expected for a superconductor with a six-fold symmetric basal plane,
and oriented with Bragg peaks along the ½1 20� crystalline direction.
The same symmetry and orientation is observed in a reference mea-
surementonundopedCsV3Sb5 as shown in Fig. 1f, althoughVL imaging
is only possible at a low field and temperature due to the much larger
penetration depth (182.7 nm vs 106.8 nm) and much lower upper cri-
tical field (0.3 T vs 2.2 T)46. In contrast, vortex imaging by scanning
tunneling spectroscopy (STS) found a VL that undergoes a 15° rotation
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Fig. 1 | Vortex lattice diffraction patterns. a Cs(V0.86Ta0.14)3Sb5 sample mosaic
used for the SANS experiments, with the arrows indicating the in-plane crystalline
directions. b Field-temperature phase diagram indicating where SANS were per-
formed. c Cs(V0.86Ta0.14)3Sb5 VL diffraction pattern at 1.7 K and 0.1 T. The arrows
indicate the crystalline orientation. d Same at 0.25 T and e 0.5 T. In panel (e) only

Bragg peaks at the lower half of the detectorwere rocked through the Ewald sphere
and the positions of symmetry equivalent peaks are indicated by circles. f CsV3Sb5
VL diffraction pattern at 35mK and 50mT. For all diffraction patterns, background
measurements obtained at zero field are subtracted and the region near q =0 is
masked off. A separate color scale is used for each diffraction pattern.
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as the applied field is increased from 75mT to 200mT, and where the
high field orientation is orthogonal to the one reported here47. This
highlights how different results, reflecting the bulk properties, may be
obtained using SANS compared to surface probes with a limited field
of view, such as STS.

The VL orientation is determined by anisotropies within the
screening current plane, which may arise from the Fermi surface (FS)48

or the superconducting gap49–51. Considering reports of an isotropic gap
on all three FS sheets in Cs(V0.86Ta0.14)3Sb5

19, the former scenario is the
most likely. A direct correlation between the VL orientation and the
band structure requires an evaluation of Fermi velocity averages as well
as a directionally resolved Density of States at the Fermi level48,52, which
has presently not been carried out for CsV3Sb5 or Cs(V0.86Ta0.14)3Sb5.
Nevertheless, themorphology of almost perfectly nested hexagonal (β)
and triangular (δ) FS sheets with flat sections perpendicular to the Γ-K
direction13,19,53,54, is consistent with the observed VL orientation. This
commonality, together with the isotropic (α) FS sheet, may also explain
the absence of a field-driven VL rotation transition observed in
other multiband superconductors such as MgB2

55 and UPt3
56,57.

Scattering vector magnitude
The scattering vector magnitude for a triangular VL is

qneðBÞ=2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bffiffiffi
3

p
Φne

s
, ð1Þ

whereB is themagnetic induction,Φne = h/ne is theflux quantumandn
is an even integer. For regular 2e-pairing the flux quantum is given by
Φ2e =Φ0 = 2068 Tnm2 58. Figure 2 shows the measured VL scattering
vector (q) versus applied magnetic field (μ0H). This follows the beha-
vior expected for 2e-pairing, assuming B = μ0H. Furthermore, q can be
reliably determined at temperatures up to ∼ 2

3Tc at 0.1 T and shows no
deviation from q2e. In contrast, q4e and q6e are not compatible with the
data within the experimental error.While agreement could in principle
be achieved for n ≠ 2, it requires B=

ffiffiffiffiffiffiffiffi
n=2

p
μ0H which is inconsistent

with magnetization measurements on Cs(V0.86Ta0.14)3Sb5
46. The SANS

results do thus not provide evidence for 4e- and 6e-pairing at the bulk
level that has been reported for CsV3Sb5 as one approaches Tc39. The
inset to Fig. 2 shows the magnetic induction inferred from the mea-
sured q and using eqn. (1) with n = 2. A linear fit to the data yields a

slope of 1.033 ±0.015 and an ordinate intercept of B = 7.4mT± 4.2mT.
The latter provides an upper limit of a few milliTesla on any net
spontaneous field.

Form factor field dependence
The field dependence of the scattered intensity provides information
about the superconducting penetration depth (λ) and coherence
length (ξ). This requires a measurement of the integrated intensity,
obtained by rotating the VL diffraction peak through the Bragg con-
dition as shown in Fig. 3a.Normalizing by the incident neutronfluxone
obtains the VL reflectivity

R =
2πγ2n λ

2
n ts

16Φ2
ne q

∣FðqÞ∣2, ð2Þ

where F(q) is the VL form factor, γn= 1.913 is the neutron magnetic
moment in units of the nuclear magneton, and ts is the sample
thickness59,60. Figure 3(b) shows the form factor obtained from the
SANS measurement which is found to decrease exponentially with
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Fig. 2 | Field dependence of the vortex lattice scattering vector. Full, dashed and
dot-dashed lines indicate q expected for 2e, 4e and 6e-pairing respectively. Inset
shows the magnetic induction determined from eqn. (1) assuming 2e-pairing. The
line is a linear fit. Data for x =0.14 was measured at 1.7 K and for x =0 at 35mK. For
both the main figure and the inset, error bars represent one standard deviation.
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increasing field. This is consistent with the London model

FðqÞ= B

1 + q2λ2
e�q2ξ2=2, ð3Þ

with a Gaussian core cut-off to account for a finite coherence
length61,62. The numerical factor of 1

2 in the exponent has been found
to yield reasonable values for the coherence length in a range of
superconductors, although other values have been used in the
literature43. For qλ ≫ 1 the only field dependence is through q2 ∝ B in
the exponent. A fit to the data yields λ = (113.7 ± 4.8) nm from the zero
field intercept, and ξ = (14.5 ± 0.6) nm from the slope. This agrees well
with values for λ = 106.8 nm and ξ = 12.2 nm inferred from measure-
ments of the lower and upper critical fields46. Notably, the data in
Fig. 3b shows no deviation from a purely exponential behavior which
may arise from multiband superconductivity55 or Pauli paramagnetic
effects effects63–65.

The rocking curve width (w) is inversely proportional to the
longitudinal VL correlation length. As shown in the Fig. 3b inset, w
decreases with increasing field, approaching the experimental reso-
lution. This gradual ordering is commonly observed in super-
conductors with low pinning and attributed to an enhanced vortex-
vortex interactions, and resulting increasing VL tilt modulus, as the
density increases66. This provides additional support for weak vortex
pinning previous reported for Cs(V0.86Ta0.14)3Sb5

46.

Temperature dependence of scattering intensity
The form factor is proportional to the superfluid density (ρs), which is
dominated by the lowest gap values for a reduced temperature
t =T=Tc≲ 1

3. Figure 4 shows the normalized superfluid density versus
temperature for two different applied fields, which display a clear
saturation as t → 0. In the simplest case of an s-wave superconductor
with a uniform gap

ρsðtÞ= 1�
1
2t

Z 1

0
cosh�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2ðtÞ

q
2t

0
@

1
Adε, ð4Þ

whereΔ(t) is the temperature-dependent superconducting gap inunits
of kBTc67. In the weak coupling limit

ΔðtÞ=Δ0 tanh
π
Δ0

ffiffiffiffiffiffiffiffiffiffi
1
t
� 1

r !
, ð5Þ

and Δ0 is the zero-temperature gap amplitude68. Curves in Fig. 4 show
fits to the SANS data across the entire measured temperature range,
using eqs. (4) and (5) and the measured values for Tc. This yields a
superconducting gapof 2Δ0= (1.11 ± 0.04)meV (0.1 T) and (1.08 ±0.04)
meV (0.2 T) or 2Δ0/kBTc = 2.74 ±0.09 and 2.85 ± 0.11 respectively,
somewhat lower than the BCS prediction of 3.53 and confirming weak
coupling superconductivity. This is consistent with the uniform gap
across all FS sheets obtained from ARPES19, although our values are
roughly 25% smaller. Estimates of the gap obtained from ρs(t)
determined by measurements of the lower critical field for T ≥ 1

3Tc

yielded an even larger gap, 2Δ0 = (3.6 ± 0.8)meV46. We note that a
uniform (nodeless) gapdoes not preclude e.g., s ± ispairing that would
break time-reversal symmetry or multiband superconductivity with a
s++ or s+− state69, but is inconsistent with d-wave or p-wave pairing.

In summary, our SANS studies of the Cs(V0.86Ta0.14)3Sb5 VL indi-
cates a wholly conventional superconducting state. Furthermore, the
optimal superconductivity without CDW order is likely a conventional
BCS superconductor, where electron pairing is induced by electron-
lattice coupling. Our results on Cs(V0.86Ta0.14)3Sb5 thus suggest that
the exotic properties reported for CDW related phenomena in other
members of the AV3Sb5 superconductors are likely not related to the
microscopic origin of superconductivity.

Methods
Single crystals of Cs(V1−xTax)3Sb5 were grown by by the self-flux
method5,19,70,71. These materials form in a layered kagome structure
with a P6/mmm space group5, and with facets that allow for an easy
determination of the in-plane crystalline axes. For the SANS mea-
surements a mosaic of co-aligned Cs(V0.86Ta0.14)3Sb5 single crystals
with a critical temperature Tc = 5.3 K and a total mass of 200 mg was
used, oriented with the [1 00]-axis horizontal and the ½1 20�-axis ver-
tical. The co-alignment of the individual crystals in the mosaics is
confirmed by the six sharp VL Bragg peaks observed in Figs. 1c–f and
the absence of significant scattered intensity in between those. This
also excludes twinning within the single crystals.

The SANS measurements were carried out using the SANS-I
instrument at the Swiss Spallation Neutron Source (SINQ) at the Paul
Scherrer Institute. Two experiments were performed, using a pumped
4He cryomagnet for measurements down to 1.7 K (#1) or a dilution
refrigerator (DR) for measurements between 67 mK and Tc (#2). A
reference measurement was performed on a mosaic of undoped
CsV3Sb5 sample (280 mg, Tc = 3.0 K) using the GP-SANS instrument at
theHigh Flux Isotope Reactor (HFIR) at Oak RidgeNational Laboratory
(ORNL). These measurements were carried out at a temperature of
35mK using a DR.

In all cases, a neutron wavelength λn = 1.4 nm and bandwidth of
Δλn/λn = 10% was used, and the diffracted neutrons were detected
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Fig. 4 | Temperature dependence of the superfluid density. a 0.1 T and b 0.2 T.
Error bars indicateone standard deviation. The curves are fits to an s-wavemodel as
described in the text, with gap values and critical temperatures indicated in
the plots.
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using a position-sensitive detector placed at 11m from the sample. The
horizontal magnetic field was applied along the crystalline [0 0 1]-
direction and near-parallel to the incident neutron beam. The sample
and cryomagnet were rotated together about the horizontal axes
perpendicular to the beam direction to satisfy the Bragg condition for
the different VL peaks. Small-angle background measurements were
collected in zero field at the base temperature for the respective
experiment, and subtracted from the data.

All SANS data was analyzed using the GRASP graphical reduction
and analysis software for small-angle neutron scattering available at
https://www.ill.fr/grasp/72.

Data availability
Raw data were generated at the Swiss Spallation Neutron Source SINQ
and at the High Flux Isotope Reactor large-scale facilities, and access
will be granted upon request. Derived data presented in Figs. 1(b), 2, 3,
and 4 is available through Figshare73.
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