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Superconductivity and magnetism are often antagonistic in quantum 
matter, although their intertwining has long been considered in 
frustrated-lattice systems. Here we utilize scanning tunnelling microscopy 
and muon spin resonance to demonstrate time-reversal symmetry-breaking 
superconductivity in kagome metal Cs(V, Ta)3Sb5, where the Cooper pairing 
exhibits magnetism and is modulated by it. In the magnetic channel, we 
observe spontaneous internal magnetism in a fully gapped superconducting 
state. Under the perturbation of inverse magnetic fields, we detect a 
time-reversal asymmetrical interference of Bogoliubov quasi-particles at 
a circular vector. At this vector, the pairing gap spontaneously modulates, 
which is distinct from pair density waves occurring at a point vector and 
consistent with the theoretical proposal of an unusual interference effect 
under time-reversal symmetry breaking. The correlation between internal 
magnetism, Bogoliubov quasi-particles and pairing modulation provides a 
chain of experimental indications for time-reversal symmetry-breaking  
k ag ome s up er co nd uc tivity.

A kagome lattice is a lattice made of corner-sharing triangles. Initial 
research on kagome physics starts with its unusual quantum mag-
netism: the geometrical spin frustration can lead to the absence of a 
magnetic transition1,2, and geometrically localized electrons can lead 
to flat-band ferromagnetism3. Early considerations4–6 of superconduc-
tivity in materials hosting kagome lattices, intriguingly, also show an 
intimate relationship with magnetism, including the concepts of fer-
romagnetic superconductors and time-reversal symmetry-breaking 
(TRSB) superconductivity. Recent studies of topological kagome mag-
nets and superconductors further push the interplay between magnet-
ism and correlations in the kagome lattice to the frontier of quantum 

materials7. In particular, research on the CsV3Sb5 class of kagome super-
conductors has widely discussed a TRSB charge order8–15. However, 
the nature of their superconductivity ground state remains elusive. In 
this Letter, we report the discovery of TRSB superconductivity in the 
kagome metal Cs(V, Ta)3Sb5 via both magnetic and electronic probes.

The kagome superconductor16 CsV3Sb5 crystallizes in the 
P6/mmm space group, with a kagome network of vanadium cations 
coordinated by octahedra of Sb that is further separated by layers of 
Cs (Fig. 1a, inset). When 14% Ta atoms are doped into the V-kagome 
layer17,18, the charge density wave order is fully suppressed and the 
critical temperature of superconductivity TC is enhanced to 5 K.  

Received: 5 December 2023

Accepted: 5 August 2024

Published online: xx xx xxxx

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn

http://www.nature.com/naturematerials
https://doi.org/10.1038/s41563-024-01995-w
http://orcid.org/0000-0002-9476-5113
http://orcid.org/0000-0002-5498-328X
http://orcid.org/0000-0003-0182-2471
http://orcid.org/0000-0003-4235-9188
http://orcid.org/0000-0002-9697-4031
http://orcid.org/0000-0002-9652-6829
http://orcid.org/0000-0001-7773-9485
http://orcid.org/0000-0002-4768-5524
http://orcid.org/0000-0002-5842-9788
http://orcid.org/0009-0004-3916-7120
http://orcid.org/0000-0003-1180-3127
http://orcid.org/0000-0002-8564-0415
http://orcid.org/0000-0002-3185-6552
http://orcid.org/0000-0003-3028-377X
http://orcid.org/0000-0002-3931-0669
http://orcid.org/0000-0002-9174-0519
http://orcid.org/0000-0001-9494-0789
http://orcid.org/0000-0003-3544-3787
http://orcid.org/0000-0002-6088-3170
http://orcid.org/0000-0003-2661-4206
http://crossmark.crossref.org/dialog/?doi=10.1038/s41563-024-01995-w&domain=pdf
mailto:zhiweiwang@bit.edu.cn
mailto:yinjx@sustech.edu.cn


Nature Materials

Letter https://doi.org/10.1038/s41563-024-01995-w

function (Fig. 1e), both of which demonstrate it as a Cooper pairing 
gap. The sharp coherence peaks located at ±0.86 meV define their  
pairing gap size Δ±.

The full pairing gap is further confirmed by the muon spin reso-
nance (μSR), which is a magnetic-sensitive probe19. We perform 
transverse-field μSR experiments down to 20 mK with a field of 10 mT 
applied along the c axis (see Supplementary Information for more 
details). By extracting the first and second moments of the inhomoge-
neous field distribution from the muon spin depolarization rate, we 
obtain the temperature evolutions of the diamagnetism signal Bdia(T) 
and the inverse square of the in-plane magnetic penetration depth 

We focus our study on the Sb surface, which tightly bonds to the kag-
ome layer and is one of the natural cleavage surfaces. Imaging at high 
bias voltages reveals the underlying Ta dopants, the counting of which 
is consistent with the nominal doping concentration (Fig. 1a). These 
impurities are non-magnetic and are the major scattering source for 
quasi-particles. Imaging at low bias voltages shows the individual Sb 
atoms (Fig. 1b), and the corresponding Fourier transform confirms 
the absence of 2 × 2 charge order (Fig. 1c). Probing the differential 
conductance deep in the superconducting state, we observe a fully 
opened energy gap (Fig. 1d). This gap disappears at TC, and its line-
shape at 30 mK fits with a Bardeen–Cooper–Schrieffer (BCS) gap 
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Fig. 1 | Full pairing gap and spontaneous internal magnetism. a, A topographic 
image of Sb surfaces taken at large bias voltage (V = 2 V, I = 200 pA, T = 0.3 K), 
showing underlying Ta dopants at bright spots. The inset shows the crystal 
structure of the kagome superconductor Cs(V, Ta)3Sb5. ‘L’ and ‘H’ in the colour bar 
define low intensity and high intensity, respectively. b, A topographic image 
showing individual Sb atoms (V = −200 mV, I = 200 pA, T = 0.3 K). The yellow lines 
illustrate the underlying kagome lattice. ‘L’ and ‘H’ in the colour bar define low 
intensity and high intensity, respectively. c, The Fourier transform of the 
topographic data in b, demonstrating the absence of 2 × 2 charge density wave 
order. The red circles mark the Bragg peaks. d, Differential conductance spectra 
taken at different temperatures (V = 5 mV, I = 1 nA). e, Fitting the 30 mK tunnelling 
data with the BCS gap function. f, The temperature dependence of the 
diamagnetic shift Bdia and inverse square of the in-plane penetration depth λ−2

ab  
from the transverse field μSR. The magnetic field of 10 mT is applied along the  

c axis. The error bars represent the s.d. of the fit parameters. g, The temperature 
dependence of the zero-field muon spin relaxation rate, showing the 
spontaneous appearance of internal magnetism. The solid lines represent a 
heuristic guideline. The error bars represent the s.d. of the fit parameters. The 
inset shows the μSR time spectra AZF(t) measured in zero field (dark-blue colour) 
and under a small external magnetic field of 50 G applied in a direction 
longitudinal to the muon spin polarization (green colour). The error bars are the 
standard error of the mean. h, The absolute change of the electronic relaxation 
rate ∆Γ = Γ(T) − Γ(T > TC) for Ta-doped CsV3Sb5 at ambient pressure, KV3Sb5 at 
p = 1.1 GPa, RbV3Sb5 at p = 1.85 GPa and CsV3Sb5 at p = 1.74 GPa, plotted as a 
function of normalized temperature T/TC. The error bars represent the s.d. of the 
fit parameters. The data for pressured kagome superconductors are extracted 
from refs. 14,15.
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λ−2ab (T) (a fundamental property that is proportional to the superfluid 
density), respectively (Fig. 1f). Both signals emerge below TC, indicating 
the bulk character of superconductivity. Notably, λ−2ab  reaches its 
zero-temperature value exponentially, demonstrating full gap 
superconductivity.

After confirming the full gap, we employ the zero-field μSR experi-
ments to probe whether there is TRSB in the superconducting state. 
Figure 1g (inset) displays the zero-field μSR spectrum, measured at 
T = 1.5 K. Since the relaxation is decoupled by a small external magnetic 
field (50 G) applied longitudinally to the muon spin polarization, the 
zero-field relaxation is due to spontaneous fields that are static on the 
microsecond timescale20. Figure 1g plots the internal field width Γ(T), 
which shows a noteworthy increase upon lowering the temperature 
below TC. This observation indicates the enhanced spread of internal 
fields sensed by the muon ensemble concurrent with the onset of super-
conductivity. The increase in the relaxation below TC is estimated to be 
0.012 μs−1, corresponding to a characteristic field strength Γ/γμ = 0.15 G, 
where γμ is the gyromagnetic ratio of the muon. This is comparable to 
what has been observed in superconductors that are believed to be 
TRSB, such as Sr2RuO4 (ref. 20). A similar enhancement of Γ below TC 

has been observed14,15 in AV3Sb5 (A = K, Rb, Cs) when the charge order 
is suppressed by pressure (Fig. 1h). However, not limited to kagome 
superconductors, the electronic feature of TRSB superconductivity 
has long been elusive.

To resolve the tiny TRSB signal from the electronic structure, we 
designed magneto-electronic interference experiments at 0.3 K run-
ning for 4 months. The key fermiology of this kagome superconduc-
tor, which consists of an inner α band and outer β band(s), is shown in 
Fig. 2a. Three dominant backscattering vectors (Qα, Qβ and Qαβ) arising 
from these two sets of Fermi surfaces are seen by our experiments, 
as shown below. We collect the tunnelling conductance g(r, E) under 
different magnetic fields for a large field of view (~500 Å × 500 Å). 
We then map a ratio21,22 Z(r, E) = g(r, +E)/g(r, −E), the process of which 
selects the Bogoliubov quasi-particle interference featuring a particle– 
hole symmetry. We collect these maps at E = 0.75Δ with increasing 
c-axis magnetic field up to above its critical field (1.5 T). Through the 
Fourier transformation of these maps, we obtain the field-dependent  
Bogoliubov quasi-particle interference Z(q) in Fig. 2b. They show a 
progressive increment of Bogoliubov quasi-particle scatterings at 
three Q vectors with increasing field.
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Fig. 2 | Time-reversal asymmetrical Bogoliubov quasi-particle interference. 
a, The fermiology of this kagome superconductor, which consists of the inner 
α band and the outer β band(s). We illustrate three main scattering vectors: 
Qα, Qβ and Qαβ. b, The Bogoliubov quasi-particle interference Z(q) at different 
magnetic fields applied along the c axis. The intensities at Qα, Qβ and Qαβ are all 
progressively increasing with increasing field strength. The data are sixfold 
symmetrized. c, An illustration of inverse magnetic fields applied perpendicular 
to the kagome lattice as a time-reversal perturbation of superconductivity.  
d, The time-reversal asymmetrical Bogoliubov quasi-particles interference 
signal δZ for E = 1.25Δ (left), E = 0.75Δ (middle) and E = 0.25Δ (right), obtained by 
the subtraction of Z taken with opposite fields. The signal disappears outside 
the superconducting gap. The data are sixfold symmetrized. The black dots 

mark the Bragg peak positions. e, The disappearance of the δZ signal at the 
critical magnetic field (left) and at the superconducting transition temperature 
(right). The data are sixfold symmetrized. The black dots mark the Bragg peak 
positions. f, An illustration of inverse magnetic fields applied along the Г–M and 
Г–K directions as a time-reversal perturbation of superconductivity. g,h, The 
absence of the δZ signal at the energy outside the superconducting gap (left) 
and the emergence of the δZ signal at the energy inside the superconducting gap 
(right). Reversed magnetic fields are applied along the Г–M direction (g) and Г–K 
direction (h). The data are vertically and horizontally symmetrized. All the data 
were taken at V = 5 mV, I = 1 nA, T = 0.3 K, except for the right panel of e, which was 
taken at T = 5 K.
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Based on the magnetic sensitivity of Z(q), we further design an 
interference experiment with an innovative TRSB-sensitive setup as 
shown in Fig. 2c. We collect Z(q) data with opposite c-axis fields +B and 
−B. Then, we look at their signal difference (δZ(q) = Z(q, +B) − Z(q, −B)), 
which defines the time-reversal asymmetrical interference of Bogo-
liubov quasi-particles. In the middle (E = 0.75Δ) and right (E = 0.25Δ) 
panels of Fig. 2d, we indeed observe a TRSB signal δZ(q) at a circular 
vector q = Qα, under B = ± 0.5 T. We note that δZ/Z = 12 ± 2%, which is 
orders of magnitude larger than the random noise of the Z signal on 
the level of 0.1–1%. This TRSB signal disappears at energies outside 
the pairing gap (Fig. 2d, left, E = 1.25Δ), at the critical magnetic field 
(Fig. 2e, left), and at TC (Fig. 2e, right) (see Supplementary Information 
for more data and discussions). We further explore its behaviour with 
reversed in-plane fields B = ±1 T applied along two high-symmetry 
directions: Γ–M and Γ–K (Fig. 2f–h). In the obtained δZ(q) data taken 
at the energy outside the superconducting gap, we reconfirm the 
absence of δZ(q) signal. Inside the superconducting gap, we observe 
that the time-reversal asymmetric signal at Qα again emerges. In addi-
tion, different from a nearly isotropic signal as in the c-axis field case, 
the δZ(q) signal becomes two segmented arcs, which is due to the 
additional Doppler shift effect of in-plane field-induced screening 
supercurrent23. The TRSB setup, as well as the energy, magnetic field 
and temperature dependences of the δZ(q) signal, attest to its intimate 
relation with the internal magnetism of superconductivity. Our experi-
ment is also in line with the non-reciprocal transport and superconduct-
ing diode phenomena observed in kagome-superconductor-based 
devices24–26. These TRSB-related experiments suggest rich interplay 

between internal magnetism and Cooper pairs, and their response to 
the magnetic or electrical field applied along reverse directions (with 
a component parallel and antiparallel to the internal magnetism direc-
tion) can be different.

Although both experiments support the TRSB of the supercon-
ducting state, we also note a crucial difference between the inter-
nal field observation and time-reversal asymmetrical Bogoliubov 
quasi-particle interference. The former is detected under zero field 
while the latter is detected under reversed magnetic fields, and we 
try to fill this gap by designing a new challenging experiment for 
their possible connection. As the internal magnetism is spontaneous, 
the magnetism-sensitive Cooper pairing is also expected to exhibit 
spontaneous modifications at the aforementioned TRSB scattering 
channel27–30. For instance, a recent theory28 has suggested that, under 
TRSB, the non-magnetic impurity can cause pairing gap modulations 
distinct to the pair density wave occurring at a point vector. The deci-
sive way to check the pair modulation is by measuring the gap map. 
We find a large clean Sb surface (400 Å × 400 Å; Fig. 3a) and map the 
energy of superconducting coherence peaks at both negative bias 
voltage Δ−(r) and positive bias voltage Δ+(r) for the same field of view 
at 0.3 K (Fig. 3b–d). It is clear that the Δ+(r) map strongly mimics the 
Δ−(r) map, confirming the particle–hole symmetry of Cooper pairing 
at the atomic scale. Then, we obtain the gap map Δ(r) = [Δ+(r) − Δ−(r)]/2 
in Fig. 3e, showing detectable modulations. The Fourier transform of 
the gap map as Δ(q) is shown in Fig. 3f, which exhibits pronounced 
signals at the circular vector q = Qα. At this circular vector, its intensity 
exhibits a small anisotropy with stronger intensity along Bragg peak 

d

dI
/d

V 
(a

.u
.)

Bias (mV)
0.8 0.9

–0.85 meV 0.85 meV–0.87 meV 0.87 meVL H 100 Å

a b
Topography ∆–(r) ∆+(r)

c

HL

∆(r) ∆(q)

∆
(q

)

e f g
Filtered ∆(r)

–10 µeV 10 µeV0.85 meV 0.87 meV

Qα
Qα

q

Fig. 3 | Spontaneous Cooper pairing modulation. a, A topographic image for a 
clean Sb surface, where the following gap map is taken. b, The energy map of the 
superconducting coherence peak at negative bias Δ−(r). c, The energy map of the 
superconducting coherence peak at positive bias Δ+(r). The line with an arrow 
denotes where the line spectrums are taken. d, Spectra of the positive coherence 
peak along the line in c. From the peak position of each curve, we determine Δ+ 
at each location. Spectra are offset for clarity. e, The superconducting gap map 

Δ(r) = [Δ+(r) − Δ−(r)]/2. The upper inset shows its Fourier transform, with an arrow 
along the Bragg direction, and the lower inset shows the corresponding line cut 
with a state at Qα. f, The sixfold-symmetrized Fourier transform of the gap map. 
The dashed lines mark Qα in between. g, The Inverse Fourier transform of Δ(q) for 
the areas around Qα in the inset of e. All the data were taken at V = 5 mV, I = 1 nA, 
T = 0.3 K.

http://www.nature.com/naturematerials


Nature Materials

Letter https://doi.org/10.1038/s41563-024-01995-w

directions, similar to that of the δZ(q) signal. We further elucidate the 
real-space features of the Cooper pairing modulation by performing 
an inverse Fourier transform for Δ(q) at Qα in Fig. 3g. The real-space 
modulations contributing to the signal at Qα in Δ(q) are rather random, 
probably arising from the interplay between underlying randomly 
distributed non-magnetic dopants and the TRSB pairing state. While 
quasi-particle interference is often detected in several cuprates and 
iron-based superconductors, the gap modulations at similar vectors 
have been missing. Therefore, both δZ(q) and Δ(q) signals can serve as 
electronic fingerprints of TRSB superconductivity.

It is striking to observe δZ(q) and Δ(q) emerging predominately at 
the same vector Qα even though they are from independent measure-
ments, which supports their common relation with the underlying 
internal magnetism. The former regards time-reversal asymmetrical 
modulation of the Bogoliubov states with perturbations from inversed 
magnetic fields, while the latter regards the spontaneous modulation 
of the Cooper pairing strength. Thus, spontaneous internal magnetism, 
Bogoliubov quasi-particle interference and Cooper pairing modulation 
are intertwined in our experiments. They establish an evidence chain 
for the TRSB superconductivity in this kagome metal at the experimen-
tal level. This finding is complementary to previous detection of TRBS 
charge order, advancing our knowledge of emergent orders featuring 
magnetic–electronic duality in the kagome lattice. In reference to our 
first-principles calculations, Qα is related to the intra-band scattering 
of the α band, which is mainly composed of V/Ta dxz/yz orbitals and Sb 
pz orbitals (from the Sb atom within the kagome layer). Its association 
with TRSB is beyond consideration in a simplified kagome lattice31–36 
but is in line with the important role of p–d orbital hybridization in 
the electronic correlation discussed in kagome superconductors37–40. 
Microscopically, our results also suggest that the full gap superconduc-
tivity in this kagome metal may host a two-component TRSB supercon-
ducting order parameter Δ1 + iΔ2 (such as s + is, p + ip and d + id, where i is 
the unit imaginary number). Under such an order parameter, impurities 
can induce surrounding supercurrents that form internal magnetiza-
tion and modulate the pairing gap. An external magnetic field can 
couple with the vectorial magnetization and affect the distribution of 
supercurrents, modifying the superconducting electronic structures. 
This may further result in time-reversal asymmetrical interference of 
Bogoliubov quasi-particles. Given the research suggesting the lack 
of a well-accepted solid-state example for the simplest TRSB p-wave 
superconductivity and given that order parameters for canonical TRSB 
superconductor candidates including UTe2 and Sr2RuO4 remain elusive, 
we expect substantial theoretical efforts to be required in building 
a model for TRSB kagome superconductivity as constrained by our 
experiments. Crucially, our experimental work utilizing cutting-edge 
techniques builds up the correspondence between internal magnetism, 
Bogoliubov quasi-particles and Cooper pairing, providing a powerful 
methodology for revealing TRSB superconductors.
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Methods
Single-crystal growth
Single crystals of Cs(V0.86Ta0.14)3Sb5 were synthesized via the self-flux 
method by using Cs0.4Sb0.6 as the flux (Cs, bulk, 99.8%; V, piece, 99.999%; 
Ta, powder, 99.99%; Sb, shot, 99.9999%). The above materials were 
loaded into an alumina crucible and then heated to 1,000 °C for 200 h. 
After holding for 10 h, the mixture was cooled to 200 °C at 260 h at a 
rate of 3 K h−1. When dropped down to room temperature, the furnace 
was turned off. To remove the flux, the obtained samples were soaked 
in deionized water. Finally, shiny single crystals with hexagonal features 
were obtained.

Scanning tunnelling microscopy
Single crystals with sizes up to 3 mm × 3 mm × 1 mm were cleaved 
mechanically in situ at 10 K in ultrahigh-vacuum conditions, and 
then immediately inserted into the microscope head, already at 
He4 base temperature (4.2 K). We then further cool the microscope 
head to 0.3 K via a He3-based single-shot refrigerator. The magnetic 
field was applied with a small ramping speed of 1 T per 20 min. After 
ramping the field to a desired value, the superconducting magnet 
is set in the persistent mode, after which we wait for ~1–2 h for the 
system to relax and then find the same atomic position and start to 
take spectroscopic measurements. Tunnelling conductance spectra 
were obtained with Ir/Pt tips using standard lock-in amplifier tech-
niques with a root mean square oscillation voltage of Vm = 0.05 meV 
under applied bias voltage of V = 5 mV and tunnelling current I = 1 nA. 
We extensively scan each crystal for large and clean Sb surfaces, 
which can take up to 1 week. Topographic images were taken with 
the following tunnelling junction setup: V = ~−100 to −200 mV, 
I = ~0.05–0.5 nA. The conductance maps and gap map were obtained 
by taking a spectrum at each location (off feedback loop) with the 
following tunnelling junction setup: V = 5 mV, I = 1 nA and modula-
tion voltage Vm = ~0.05–0.2 mV. The tunnelling spectrum at 30 mK 
is taken with a separate dilution refrigerator-based scanning tun-
nelling microscope with the same scanning and tunnelling setup, 
except for a modulation voltage of Vm = 0.02 mV. The symmetriza-
tion process of the data includes sixfold symmetrization and mirror  
symmetrization.

µSR
μSR is a magnetic-sensitive probe for internal magnetism of a 
many-body ordering state. The μSR experiments were carried out 
at the Swiss Muon Source (SμS) Paul Scherrer Institute, Villigen, 
Switzerland. Zero-field and transverse-field μSR experiments on the 
single-crystalline samples were performed on the high-field HAL-
9500 and general purpose surface-muon instruments at the SμS at 
the Paul Scherrer Institute, Villigen, Switzerland. Zero field is dynami-
cally obtained (compensation better than 30 mG) by a newly installed 
automatic compensation device. When performing measurements 
in zero field, the geomagnetic field or any stray fields are tabulated 
and automatically compensated by the automatic compensation  
device.

Data availability
All data are available in the main text or Supplementary Information.
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